Special to S&T Review

Research status and prospect of aging mechanism and intervention

  • LI Jingyi ,
  • FAN Yanling ,
  • HUANG Haoyan ,
  • ZHANG Yiyuan ,
  • LIU Beibei ,
  • LIU Guanghui
Expand
  • 1. Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China;
    2. Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China;
    3. Xuanwu Hospital Capital Medical University, Beijing 100053, China;
    4. Beijing institute for Stem Cell and Regenerative Medicine Beijing, Beijing 100101, China

Received date: 2024-04-25

  Revised date: 2024-09-30

  Online published: 2024-12-26

Abstract

The progressive intensification of the population aging trend has rendered proactive engagement with this challenge exceedingly imperative. Aging denotes the organ function decline over time, the process of which is closely related to the occurrence of a variety of chronic diseases. To reveal the biological basis of aging and develop effective intervention measures has become an important and urgent issue facing the biomedical community. In this paper, the core issues of aging research were discussed, and the construction of aging model, mechanism exploration, quantification of aging degrees and implementation of intervention strategies were reviewed. The following suggestions are made: a diversified and systematic research system should be adopted in the research of aging; the aging mechanism is interpreted through the thinking combining reductionism and holistic view; a universal, reliable and highly sensitive detection system should be explored, and accurate and efficient aging intervention strategies should be developed to address the challenges posed by population aging.

Cite this article

LI Jingyi , FAN Yanling , HUANG Haoyan , ZHANG Yiyuan , LIU Beibei , LIU Guanghui . Research status and prospect of aging mechanism and intervention[J]. Science & Technology Review, 2024 , 42(22) : 6 -14 . DOI: 10.3981/j.issn.1000-7857.2024.04.00427

References

[1] 习近平:在科学家座谈会上的讲话[EB/OL]. [2020-09-11]. https://www.gov.cn/xinwen/2020-09/11/content_5542862.htm?eqid=e465fc63001ba5220000000264663d7d.
[2] 国务院办公厅关于发展银发经济增进老年人福祉的意见 [EB/OL]. [2020-09-11]. https://www.gov.cn/zhengce/content/202401/content_6926087.htm.
[3] Zhou Z, Liu Y T, Feng Y S, et al. Engineering longevitydesign of a synthetic gene oscillator to slow cellular aging [J]. Science, 2023, 380(6643): 376-381.
[4] Park S, Artan M, Han S H, et al. VRK-1 extends life span by activation of AMPK via phosphorylation[J]. Science Advances, 2020, 6(27): eaaw7824.
[5] Wang X Q, Jiang Q L, Zhang H D, et al. Tissue-specific profiling of age-dependent miRNAomic changes in Caenorhabditis elegans[J]. Nature Communications, 2024, 15(1): 955.
[6] Yuan J, Chang S Y, Yin S G, et al. Two conserved epigenetic regulators prevent healthy ageing[J]. Nature, 2020, 579: 118-122.
[7] Lu T C, Brbić M, Park Y J, et al. Aging Fly Cell Atlas identifies exhaustive aging features at cellular resolution [J]. Science, 2023, 380(6650): eadg0934.
[8] Zhao Y Y, Xuan H W, Shen C, et al. Immunosuppression induced by brain-specific HDAC6 knockdown improves aging performance in Drosophila melanogaster[J]. Phenomics, 2022, 2(3): 194-200.
[9] Holtze S, Gorshkova E, Braude S, et al. Alternative animal models of aging research[J]. Frontiers in Molecular Biosciences, 2021, 8: 660959.
[10] Tabula Muris C. A single-cell transcriptomic atlas characterizes ageing tissues in the mouse[J]. Nature, 2020, 583(7817): 590-595.
[11] Chen R P, Zhang K X, Chen H, et al. Telomerase deficiency causes alveolar stem cell senescence-associated low-grade inflammation in lungs[J]. The Journal of Biological Chemistry, 2015, 290(52): 30813-30829.
[12] Liu X, Jin Z G, Summers S, et al. Calorie restriction and calorie dilution have different impacts on body fat, metabolism, behavior, and hypothalamic gene expression[J]. Cell Reports, 2022, 39(7): 110835.
[13] Zhang P Z, Catterson J H, Grönke S, et al. Inhibition of S6K lowers age-related inflammation and increases lifespan through the endolysosomal system[J]. Nature Aging, 2024, 4(4): 491-509.
[14] Yin P, Li S H, Li X J, et al. New pathogenic insights from large animal models of neurodegenerative diseases [J]. Protein & Cell, 2022, 13(10): 707-720.
[15] Colman R J, Anderson R M. Nonhuman primate calorie restriction[J]. Antioxidants & Redox Signaling, 2011, 14(2): 229-239.
[16] Jones R A, Harrison C, Eaton S L, et al. Cellular and molecular anatomy of the human neuromuscular junction [J]. Cell Reports, 2017, 21(9): 2348-2356.
[17] Zhang W Q, Wan H F, Feng G H, et al. SIRT6 deficiency results in developmental retardation in Cynomolgus monkeys[J]. Nature, 2018, 560(7720): 661-665.
[18] Wang F, Zhang W Q, Yang Q Y, et al. Generation of a Hutchinson-Gilford progeria syndrome monkey model by base editing[J]. Protein & Cell, 2020, 11(11): 809-824.
[19] Liang C Q, Ke Q, Liu Z P, et al. BMAL1 moonlighting as a gatekeeper for LINE1 repression and cellular senescence in Primates[J]. Nucleic Acids Research, 2022, 50(6): 3323-3347.
[20] Yang W L, Guo X Y, Tu Z C, et al. PINK1 kinase dysfunction triggers neurodegeneration in the primate brain without impacting mitochondrial homeostasis[J]. Protein & Cell, 2022, 13(1): 26-46.
[21] Liu Z, Li X, Zhang J T, et al. Autism-like behaviours and germline transmission in transgenic monkeys overexpressing MeCP2[J]. Nature, 2016, 530(7588): 98-102.
[22] Qiu P Y, Jiang J, Liu Z, et al. BMAL1 knockout macaque monkeys display reduced sleep and psychiatric disorders[J]. National Science Review, 2019, 6(1): 87-100.
[23] Liu Z, Cai Y J, Wang Y, et al. Cloning of macaque monkeys by somatic cell nuclear transfer[J]. Cell, 2018, 172(4): 881-887.e7.
[24] Wu S H, Li X, Qin D D, et al. Induction of core symptoms of autism spectrum disorder by in vivo CRISPR/ Cas9-based gene editing in the brain of adolescent Rhesus monkeys[J]. Science Bulletin, 2021, 66(9): 937-946.
[25] Chen Y C, Yu J H, Niu Y Y, et al. Modeling rett syndrome using TALEN-edited MECP2 mutant Cynomolgus monkeys[J]. Cell, 2017, 169(5): 945-955.e10.
[26] Kubben N, Zhang W Q, Wang L X, et al. Repression of the antioxidant NRF2 pathway in premature aging[J]. Cell, 2016, 165(6): 1361-1374.
[27] Zhang W, Li J, Suzuki K, et al. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging[J]. Science, 2015, 348(6239): 1160-1163.
[28] Liu G H, Suzuki K, Li M, et al. Modelling Fanconi Anemia pathogenesis and therapeutics using integrationfree patient-derived iPSCs[J]. Nature Communications, 2014, 5: 4330.
[29] Yan P Z, Li Q Q, Wang L X, et al. FOXO3-Engineered human ESC-derived vascular cells promote vascular protection and regeneration[J]. Cell Stem Cell, 2019, 24(3): 447-461.e8.
[30] López-Otín C, Blasco M A, Partridge L, et al. Hallmarks of aging: An expanding universe[J]. Cell, 2023, 186(2): 243-278.
[31] Liu Z P, Ji Q Z, Ren J, et al. Large-scale chromatin reorganization reactivates placenta-specific genes that drive cellular aging[J]. Developmental Cell, 2022, 57(11): 1347-1368.e12.
[32] Zhao H K, Ji Q Z, Wu Z M, et al. Destabilizing heterochromatin by APOE mediates senescence[J]. Nature Aging, 2022, 2(4): 303-316.
[33] Liu X Q, Liu Z P, Wu Z M, et al. Resurrection of endogenous retroviruses during aging reinforces senescence[J]. Cell, 2023, 186(2): 287-304.e26.
[34] Zhang H, Li J M, Yu Y, et al. Nuclear Lamina erosioninduced resurrection of endogenous retroviruses underlies neuronal aging[J]. Cell Reports, 2023, 42(11): 113396.
[35] Yang J H, Hayano M, Griffin P T, et al. Loss of epigenetic information as a cause of mammalian aging[J]. Cell, 2023, 186(2): 305-326.e27.
[36] Bleve A, Motta F, Durante B, et al. Immunosenescence, inflammaging, and frailty: Role of myeloid cells in agerelated diseases[J]. Clinical Reviews in Allergy & Immunology, 2023, 64(2): 123-144.
[37] Franceschi C, Garagnani P, Parini P, et al. Inflammaging: A new immune-metabolic viewpoint for age-related diseases[J]. Nature Reviews Endocrinology, 2018, 14(10): 576-590.
[38] Mittelbrunn M, Kroemer G. Hallmarks of T cell aging[J]. Nature Immunology, 2021, 22(6): 687-698.
[39] Brauning A, Rae M, Zhu G, et al. Aging of the immune system: Focus on natural killer cells phenotype and functions[J]. Cells, 2022, 11(6): 1017.
[40] Li X, Li C T, Zhang W Y, et al. Inflammation and aging: Signaling pathways and intervention therapies[J]. Signal Transduction and Targeted Therapy, 2023, 8(1): 239.
[41] Xu D C, Jin T J, Zhu H, et al. TBK1 suppresses RIPK1-driven apoptosis and inflammation during development and in aging[J]. Cell, 2018, 174(6): 1477-1491.e19.
[42] Bao W D, Pang P, Zhou X T, et al. Loss of ferroportin induces memory impairment by promoting ferroptosis in Alzheimer’s disease[J]. Cell Death and Differentiation, 2021, 28(5): 1548-1562.
[43] Yi W W, Zhang J H, Huang Y X, et al. Ferritin-mediated mitochondrial iron homeostasis is essential for the survival of hematopoietic stem cells and leukemic stem cells[J]. Leukemia, 2024, 38(5): 1003-1018.
[44] Li X, Wang J Q, Wang L Y, et al. Lipid metabolism dysfunction induced by age-dependent DNA methylation accelerates aging[J]. Signal Transduction and Targeted Therapy, 2022, 7(1): 162.
[45] Li Z C, Xu K, Zhao S, et al. SPATA4 improves aging-induced metabolic dysfunction through promotion of preadipocyte differentiation and adipose tissue expansion[J]. Aging Cell, 2021, 20(1): e13282.
[46] Dou X F, Fu Q, Long Q L, et al. PDK4-dependent hypercatabolism and lactate production of senescent cells promotes cancer malignancy[J]. Nature Metabolism, 2023, 5(11): 1887-1910.
[47] Wang S, Zheng Y X, Li J Y, et al. Single-cell transcriptomic atlas of primate ovarian aging[J]. Cell, 2020, 180(3): 585-600.e19.
[48] Zhang W Q, Zhang S, Yan P Z, et al. A single-cell transcriptomic landscape of primate arterial aging[J]. Nature Communications, 2020, 11(1): 2202.
[49] Sun S H, Li J M, Wang S, et al. CHIT1-positive microglia drive motor neuron ageing in the primate spinal cord [J]. Nature, 2023, 624(7992): 611-620.
[50] Li J Y, Zheng Y X, Yan P Z, et al. A single-cell transcriptomic atlas of primate pancreatic islet aging[J]. National Science Review, 2021, 8(2): nwaa127.
[51] Ke H N, Tang S Y, Guo T, et al. Landscape of pathogenic mutations in premature ovarian insufficiency[J]. Nature Medicine, 2023, 29(2): 483-492.
[52] Oh H S H, Rutledge J, Nachun D, et al. Organ aging signatures in the plasma proteome track health and disease [J]. Nature, 2023, 624(7990): 164-172.
[53] Li J M, Xiong M Z, Fu X H, et al. Determining a multimodal aging clock in a cohort of Chinese women[J]. Med, 2023, 4(11): 825-848.e13.
[54] Zheng Z K, Li J M, Liu T Z, et al. DNA methylation clocks for estimating biological age in Chinese cohorts [J]. Protein & Cell, 2024, 15(8): 575-593.
[55] Xia X, Chen X W, Wu G, et al. Three-dimensional facial-image analysis to predict heterogeneity of the human ageing rate and the impact of lifestyle[J]. Nature Metabolism, 2020, 2(9): 946-957.
[56] Consortium A B, Suo J L, Gan Y B, et al. A framework of biomarkers for skeletal aging: A consensus statement by the aging biomarker consortium[J]. Life Medicine, 2023, 2(6): lnad045.
[57] Consortium A B, Zhang W W, Che Y, et al. A biomarker framework for cardiac aging: The aging biomarker consortium consensus statement[J]. Life Medicine, 2023, 2(5): lnad035.
[58] Consortium A B, Jiang M M, Zheng Z Z, et al. A biomarker framework for liver aging: The aging biomarker consortium consensus statement[J]. Life Medicine, 2024, 3(1): lnae004.
[59] Ren J, Song M S, Zhang W Q, et al. The Aging Biomarker Consortium represents a new era for aging research in China[J]. Nature Medicine, 2023, 29(9): 2162-2165.
[60] Guo Y, You J, Zhang Y, et al. Plasma proteomic profiles predict future dementia in healthy adults[J]. Nature Aging, 2024, 4(2): 247-260.
[61] Shen Y, Wang H B, Sun Q Y, et al. Increased plasma beta-secretase 1 may predict conversion to Alzheimer’s disease dementia in individuals with mild cognitive impairment[J]. Biological Psychiatry, 2018, 83(5): 447-455.
[62] Jia J P, Ning Y Y, Chen M L, et al. Biomarker changes during 20 years preceding Alzheimer’s disease[J]. The New England Journal of Medicine, 2024, 390(8): 712-722.
[63] Xiang J, Tao Y Q, Xia Y Y, et al. Development of an α-synuclein positron emission tomography tracer for imaging synucleinopathies[J]. Cell, 2023, 186(16): 3350-3367.e19.
[64] Li Y Y, Ying Y Q, Yao T Y, et al. Decreased water exchange rate across blood–brain barrier in hereditary cerebral small vessel disease[J]. Brain, 2023, 146(7): 3079-3087.
[65] Hamczyk M R, Nevado R M, Barettino A, et al. Biological versus chronological aging: JACC focus seminar[J]. Journal of the American College of Cardiology, 2020, 75(8): 919-930.
[66] Covarrubias A J, Perrone R, Grozio A, et al. NAD(+) metabolism and its roles in cellular processes during ageing [J]. Nature Reviews Molecular Cell Biology, 2021, 22(2): 119-141.
[67] Strong R, Miller R A, Bogue M, et al. Rapamycin-mediated mouse lifespan extension: Late-life dosage regimes with sex-specific effects[J]. Aging Cell, 2020, 19(11): e13269.
[68] Shan H Z, Geng L L, Jiang X Y, et al. Large-scale chemical screen identifies Gallic acid as a geroprotector for human stem cells[J]. Protein & Cell, 2022, 13(7): 532-539.
[69] Yang Y, Lu X, Liu N, et al. Metformin decelerates aging clock in male monkeys[J]. Cell, 2024, 187(22): 6358-6378.
[70] Novais E J, Tran V A, Johnston S N, et al. Long-term treatment with senolytic drugs Dasatinib and Quercetin ameliorates age-dependent intervertebral disc degeneration in mice[J]. Nature Communications, 2021, 12(1): 5213.
[71] Zhang P S, Kishimoto Y, Grammatikakis I, et al. Senolytic therapy alleviates Aβ-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer’s disease model[J]. Nature Neuroscience, 2019, 22(5): 719-728.
[72] Syed D N, Adhami V M, Khan M I, et al. Inhibition of Akt/mTOR signaling by the dietary flavonoid fisetin[J]. Anti-Cancer Agents in Medicinal Chemistry, 2013, 13(7): 995-1001.
[73] Grynkiewicz G, Demchuk O M. New perspectives for fisetin[J]. Frontiers in Chemistry, 2019, 7: 697.
[74] Davidsohn N, Pezone M, Vernet A, et al. A single combination gene therapy treats multiple age-related diseases [J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(47): 23505-23511.
[75] Lu Y C, Brommer B, Tian X, et al. Reprogramming to recover youthful epigenetic information and restore vision [J]. Nature, 2020, 588(7836): 124-129.
[76] Hishida T, Yamamoto M, Hishida-Nozaki Y, et al. In vivo partial cellular reprogramming enhances liver plasticity and regeneration[J]. Cell Reports, 2022, 39(4): 110730.
[77] Jing Y B, Jiang X Y, Ji Q Z, et al. Genome-wide CRISPR activation screening in senescent cells reveals SOX5 as a driver and therapeutic target of rejuvenation[J]. Cell Stem Cell, 2023, 30(11): 1452-1471.e10.
[78] Deng L P, Ren R T, Liu Z P, et al. Stabilizing heterochromatin by DGCR8 alleviates senescence and osteoarthritis[J]. Nature Communications, 2019, 10(1): 3329.
[79] Liang C Q, Liu Z P, Song M S, et al. Stabilization of heterochromatin by CLOCK promotes stem cell rejuvenation and cartilage regeneration[J]. Cell Research, 2021, 31(2): 187-205.
[80] Ye Y X, Yang K, Liu H S, et al. SIRT2 counteracts primate cardiac aging via deacetylation of STAT3 that silences CDKN2B[J]. Nature Aging, 2023, 3(10): 1269-1287.
[81] Sun S M, Qin W F, Tang X L, et al. Vascular endothelium-targeted Sirt7 gene therapy rejuvenates blood vessels and extends life span in a Hutchinson-Gilford progeria model[J]. Science Advances, 2020, 6(8): eaay5556.
[82] Wang W, Zheng Y X, Sun S H, et al. A genome-wide CRISPR-based screen identifies KAT7 as a driver of cellular senescence[J]. Science Translational Medicine, 2021, 13(575): eabd2655.
[83] Ma S, Ji Z, Zhang B, et al. Spatial transcriptomic landscape unveils immunoglobin-associated senescence as a hallmark of aging[J/OL]. Cell, [2024-11-04]. https://www.cell.com/cell/abstract/S0092-8674(24)01201-7.
[84] Golpanian S, DiFede D L, Khan A, et al. Allogeneic human mesenchymal stem cell infusions for aging frailty[J]. The Journals of Gerontology Series A, Biological Sciences and Medical Sciences, 2017, 72(11): 1505-1512.
[85] Lee W S, Kim H J, Kim K I, et al. Intra-articular injection of autologous adipose tissue-derived mesenchymal stem cells for the treatment of knee osteoarthritis: A phase IIb, randomized, placebo-controlled clinical trial [J]. Stem Cells Translational Medicine, 2019, 8(6): 504-511.
[86] Sun S M, Meng Y, Li M Y, et al. CD133+ endotheliallike stem cells restore neovascularization and promote longevity in progeroid and naturally aged mice[J]. Nature Aging, 2023, 3(11): 1401-1414.
[87] Amor C, Feucht J, Leibold J, et al. Senolytic CAR T cells reverse senescence-associated pathologies[J]. Nature, 2020, 583(7814): 127-132.
[88] Amor C, Fernández-Maestre I, Chowdhury S, et al. Prophylactic and long-lasting efficacy of senolytic CAR T cells against age-related metabolic dysfunction[J]. Research Square, 2023: rs.3.rs-rs.3385749.
[89] Yang D, Sun B, Li S R, et al. NKG2D-CAR T cells eliminate senescent cells in aged mice and nonhuman Primates[J]. Science Translational Medicine, 2023, 15(709): eadd1951.
[90] Wang T W, Johmura Y, Suzuki N, et al. Blocking PDL1-PD-1 improves senescence surveillance and ageing phenotypes[J]. Nature, 2022, 611(7935): 358-364.
[91] Waziry R, Ryan C P, Corcoran D L, et al. Effect of longterm caloric restriction on DNA methylation measures of biological aging in healthy adults from the CALERIE trial[J]. Nature Aging, 2023, 3: 248-257.
[92] Rhoads T W, Anderson R M. Caloric restriction has a new player[J]. Science, 2022, 375(6581): 620-621.
[93] Sun S H, Ma S, Cai Y S, et al. A single-cell transcriptomic atlas of exercise-induced anti-inflammatory and geroprotective effects across the body[J]. Innovation (Cambridge (Mass)), 2023, 4(1): 100380.
Outlines

/