[1] 中核战略规划研究总院. 2022年世界核能发展回顾—— 产业 发展 篇[EB/OL]. (2023-01-30) [2023-02-02]. https://www. atominfo. com. cn/zhzlghyjzy/yjbg/1287156/index.html.
[2] 中核战略规划研究总院. 2022年世界核能发展回顾——政策篇[EB/OL]. (2023-01-06) [2023-02-02]. https: //www. atominfo. com. cn/zhzlghyjzy/yjbg/1284592/index. html.
[3] 中国科学院科技战略咨询研究院. 英国发布《民用核电2050路 线图 》[EB/OL]. (2023-04-11) [2024-05-04]. https://www.casisd.cas.cn/zkcg/ydkb/kjqykb/2024/kjqykb2- 403/202404/t20240411_7090265.html.
[4] 中国核工业. 韩国核电“走出去”的野心有多大[EB/OL]. (2023-04-07) [2024-05-04]. https://www. thepaper. cn/ newsDetail_forward_22611438.
[5] 国家核安全局. 我国高温气冷堆发展战略研究[EB/OL]. (2023-12-07) [2024-05-04]. https://nnsa. mee. gov. cn/ztzl/ xgzgt/hyfsaqkp/kptw/202312/t20231207_1058444.html.
[6] 上海市国资委. 钍基熔盐实验堆于甘肃武威建成,上海建工将与中科院上海应物所继续深入合作[EB/OL]. (2023-10-23)[2024-05-04]. https://www.shanghai.gov.cn/ nw31406/20231023/608defcbbb4c4d2abc4c274ad9a6d23a. html.
[7] 蔡翔舟, 戴志敏, 徐洪杰. 钍基熔盐堆核能系统[J]. 物理, 2016, 45(9): 578-590.
[8] 美国核管会发布NuScale 50MW小堆设计最终认证[EB/ OL]. (2023-01-30)[2023-02-02]. https://power.in-en.com/ html/power-2422656.shtml.
[9] 中核战略规划研究总院. 2022年世界核能发展回顾—— 科技 创新 篇[EB/OL]. (2023-01-09) [2023-02-02]. https://www. atominfo. com. cn/zhzlghyjzy/yjbg/1284874/index.html.
[10] 全球 首座 浮动 核电 站正 式投 入商 业运 营[EB/OL]. [2020-05-25]. http://www. chinapower. com. cn/xw/gjxw/ 20200525/19857.html.
[11] 宋丹戎, 李庆, 秦冬, 等.“玲龙一号”反应堆研发关键技术: 堆芯设计与安全设计[J]. 核动力工程, 2021, 42(4): 1-5.
[12] 吴宜灿, 刘超, 金鸣, 等. 兆瓦级锂冷空间核反应堆电源 方案 设计 与研 发进 展[J]. 中国 科学(技术 科学), 2024, 54(3): 365-376.
[13] Kang X, Tong Y J, Wu W, et al. Transient multi-physics behavior of an insert high temperature superconducting no-insulation coil in hybrid superconducting magnets with inductive coupling[J]. Applied Mathematics and Mechanics, 2023, 44(2): 255-272.
[14] 世界首次激光核聚变点火成功,核聚变两大技术路线谁将胜出[EB/OL]. (2022-12-15)[2022-12-15]. https:// www.thepaper.cn/newsDetail_forward_21177158.
[15] 聚变能产业协会. The global fusion industry in 2023[EB/OL]. [2024-05-10]. https://www. fusionindustryassociation.org/wp-content/uploads/2023/07/FIA%E2%80%- 932023-FINAL.pdf.
[16] 高翔, 万元熙, 丁宁, 等. 可控核聚变科学技术前沿问题和进展[J]. 中国工程科学, 2018, 20(3): 25-31.
[17] 应强强. 我国人造太阳运行时间突破千秒[J]. 高中生之友, 2022, 539(13): 45.
[18] 我国掌握可控核聚变高约束先进控制技术[EB/OL]. (2023-08-29) [2024-05-10]. https://nnsa. mee. gov. cn/ ywdt/hyzx/202308/t20230829_1039616.html.
[19] 余振雄. J-TEXT装置ECHR控制系统研究[D]. 武汉: 华中科技大学, 2017.
[20] 万宝年, 徐国盛. EAST全超导托卡马克高约束稳态运行实验研究进展[J]. 中国科学(物理学力学天文学), 2019, 49(4): 43-55.
[21] 李建刚. 托卡马克研究的现状及发展[J]. 物理, 2016, 45(2): 88-97.
[22] 于浩洋, 潘建均, 李昱昉, 等. 新形势下核聚变标准化工作的问题与建议[J]. 标准科学, 2022(增刊1): 49-53.
[23] Green B J. The European fusion research and development programme and the ITER project[J]. Journal of Physics: Conference Series, 2006, 44: 1-9.
[24] 谌继明. 填补国际核聚变标准空白引领中国核领域标准走出去: 专访《核聚变堆高温承压部件的热氦检漏方法》项目负责人谌继明[J]. 核标准计量与质量, 2022(3): 2-6.
[25] 陈科.“人造太阳”ITER核心部件首件中国制造完成[N]. 科技日报, 2022-11-23(1).
[26] 本刊编辑部. 2023十大科技前沿趋势[J]. 科技智囊, 2023(1): 1-4.
[27] 向魁, 梁展鹏, 李华, 等. CFETR聚变发电厂概念设计技术研究[J]. 南方能源建设, 2022, 9(2): 45-52.
[28] 张国书. 核聚变能源的开发现状及新进展[J]. 中国核电, 2018, 11(1): 30-34.
[29] 徐冠华, 刘琦岩, 罗晖, 等. 热核聚变实验堆开启“无限能源”时代[J]. 华东科技, 2022(12): 18-21.
[30] 中科院等离子体物理研究所. 聚变堆主机关键系统材料 综合 性能 研究 平台 完成 首批 系统 验收 [EB/OL]. (2023-12-31)[2024-05-04]. http://www.ipp.cas.cn/xwdt/ kydt/202312/t20231231_766918.html.
[31] 刘畅司晨, 王夙素.“橘子瓣”状实验平台已基本落成[N]. 合肥晚报, 2022-11-29(A02).
[32] 张平, 于波, 徐景明. 核能制氢技术的发展[J]. 核化学与放射化学, 2011, 33(4): 193-203.
[33] El-Emam R S, Zamfirescu C, Gabriel K S. Hydrogen production pathways for Generation-IV reactors[M]// Handbook of Generation IV Nuclear Reactors. Amsterdam: Elsevier, 2023: 665-680.
[34] 李晨曦, 伍浩松. 主要核工业国家大力推进核能制氢[J]. 国外核新闻, 2022(12): 22-25.
[35] Yang X C, Yu G C, Xu L J, et al. Degradation of the mixed organic solvents of tributyl phosphate and n-dodecane by heterogeneous Fenton-like oxidation using nanoscale zero-valent iron as the catalyst[J]. Chemosphere, 2022, 292: 133449.
[36] Wang Q, Macián-Juan R. Thermodynamic analysis of two novel very high temperature gas-cooled reactorbased hydrogen-electricity cogeneration systems using sulfur-iodine cycle and gas-steam combined cycle[J]. Energy, 2022, 256: 124671.
[37] Ni H, Qu X H, Peng W, et al. Analysis of internal heat exchange network and hydrogen production efficiency of iodine-sulfur cycle for nuclear hydrogen production[J]. International Journal of Energy Research, 2022, 46(11): 15665-15682.
[38] 曹军文, 覃祥富, 胡轶坤, 等. 高温气冷堆耦合高温电解规模化制氢系统仿真[J]. 清华大学学报(自然科学版), 2023, 63(8): 1246-1256.
[39] 曲新鹤, 胡庆祥, 倪航, 等. 基于高温气冷堆的制氢耦合炼钢系统初步设计和能量分析[J]. 清华大学学报(自然科学版), 2023, 63(8): 1236-1245.
[40] 张贤, 胡娜, 吕彩霞, 等. 一种太阳能辅助压水堆核电站二回路发电系统及方法: CN113931709A[P]. 2022- 01-14.
[41] 孙凯强, 张义明, 孙强, 等. 一种基于核电、风电相结合的海上制氢制氨储舱平台: CN215911912U[P]. 2022- 02-25.
[42] Pombo D V, Bindner H W, Spataru S V, et al. Machine learning-driven energy management of a hybrid nuclearwind-solar-desalination plant[J]. Desalination, 2022, 537: 115871.
[43] 杨继明, 张澈, 张彬, 等. 海上风电核能互补运行系统及方法: CN202111365399X[P]. 2022-03-15.
[44] Chen Q Q, Lü M, Gu Y, et al. Hybrid energy system for a coal-based chemical industry[J]. Joule, 2018, 2(4): 607-620.
[45] 陈倩倩, 孙予罕, 唐志永, 等. 一种核能-煤生产燃料化学 品的 零碳 排放 系统 及方 法: CN108277047B[P]. 2020-05-15.
[46] D'auria F, Bousbia S A, Galassi G M, et al. CRISSUES, Neutronics/thermal-hydraulics coupling in LWR technology[R]. Paris: Nuclear Energy Agency of the OECD (NEA), 2004.
[47] Chauliac C, Aragonés J M, Bestion D, et al. NURESIM– A European simulation platform for nuclear reactor safety: Multi-scale and multi-physics calculations, sensitivity and uncertainty analysis[J]. Nuclear Engineering and Design, 2011, 241(9): 3416-3426.
[48] Szilard R, Zhang H, Kothe D, et al.The Consortium for advanced simulation of light water reactors[C]//Enlarged Halden Programme Group Meeting. Idaho Falls, Idaho: Idaho National Laboratory, 2011.
[49] Bradley K. NEAMS: The nuclear energy advanced modeling and simulation program[J]. Office of Scientific & Technical Information Technical Reports, 2013, doi: 10.2172/1093526.
[50] 杨文, 胡长军, 刘天才, 等. 数值反应堆及CVR1.0研究进展[J]. 原子能科学技术, 2019, 53(10): 1821-1832.
[51] Belcourt N, Bartlett R, Pawlowski R, et al. A theory manual for multi-physics code coupling in LIME[J]. Physics, Computer Science, 2011, doi: 10.2172/1011710.
[52] Gaston D, Newman C, Hansen G, et al. MOOSE: A parallel computational framework for coupled systems of nonlinear equations[J]. Nuclear Engineering and Design, 2009, 239(10): 1768-1778.
[53] Yamaji A, Oka Y, Koshizuka S. Three-dimensional core design of high temperature supercritical-pressure light water reactor with neutronic and thermal-hydraulic coupling[J]. Journal of Nuclear Science and Technology, 2005, 42(1): 8-19.
[54] Yoo J, Ishiwatari Y, Oka Y, et al. Conceptual design of compact supercritical water-cooled fast reactor with thermal hydraulic coupling[J]. Annals of Nuclear Energy, 2006, 33(11/12): 945-956.
[55] Safarzadeh O, Shirani A S, Minuchehr A, et al. Coupled neutronic/thermo-hydraulic analysis of water/Al2O3 nanofluids in a VVER-1000 reactor[J]. Annals of Nuclear Energy, 2014, 65: 72-77.
[56] Périn Y, Velkov K. CTF/DYN3D multi-scale coupled simulation of a rod ejection transient on the NURESIM platform[J]. Nuclear Engineering and Technology, 2017, 49(6): 1339-1345.
[57] Waata C. Coupled neutronics thermal hydraulics analysis of a high-performance light-water reactor fuel assembly [J]. Physics, 2006, doi: 10.18419/OPUS-1695.
[58] Vazquez M, Tsige-Tamirat H, Ammirabile L, et al. Coupled neutronics thermal-hydraulics analysis using Monte Carlo and sub-channel codes[J]. Nuclear Engineering and Design, 2012, 250: 403-411.
[59] Gurecky W, Schneider E. Development of an MCNP6- ANSYS FLUENT multiphysics coupling capability[C]// Proceedings of 201624th International Conference on Nuclear Engineering, 2016.
[60] 彭木彰, 张全, 王国力, 等. TISKTH-3一部中子学和热工水力学耦合的轻水堆堆芯瞬态分析程序[J]. 核科学与工程, 1988(1): 19-32.
[61] 陈新辉, 赵兆颐. 完全三维堆芯中子学/热工水力学耦合程序TISKTH-4[J]. 核科学与工程, 1992, 12(2): 110- 115.
[62] 廖承奎. 三维节块中子动力学方程组的数值解法及物理与热工-水力耦合瞬态过程的数值计算的研究[D]. 西安: 西安交通大学, 2002.
[63] 赵文博. 瞬态节块格林函数方法及其与热工-水力耦合研究[D]. 北京: 清华大学, 2012.
[64] 张阳, 俞楼涵榕, 余大利, 等. 基于蒙特卡罗和CFD耦合模拟的空间锂冷核反应堆设计分析[J]. 核科学与工程, 2022, 42(1): 28-33.
[65] 张汉, 郭炯, 邬颖杰, 等. 高温气冷堆全耦合系统直接联立求解的方法研究和程序开发[J]. 原子能科学技术, 2022, 56(2): 271-284.
[66] 左献迪. 多通道液态燃料熔盐堆物理-热工耦合研究[D]. 上海: 中国科学院大学(中国科学院上海应用物理研究所), 2022.
[67] 钱冠华, 于涛, 杨涛, 等. 基于统一框架的多物理耦合方案研究与平台开发[J]. 核动力工程, 2022, 43(6): 51- 60.
[68] Xie Q X, Li W, Guan C R, et al. Development of 3D transient neutronics and thermal-hydraulics coupling procedure and its application to a fuel pin analysis[J]. Nuclear Engineering and Design, 2023, 404: 112164.
[69] 翁名辉. 基于COMSOL的蒙卡-有限元核热力耦合方法研究[D]. 北京: 华北电力大学, 2022.
[70] 吴明宇, 朱迎, 卢旭, 等. 反应堆核-热-燃耗多物理耦合框架研究与应用[J]. 原子能科学技术, 2021, 55(9): 1643-1649.
[71] 巫英伟, 贺亚男, 章静, 等. 核反应堆系统多维度多物理场耦合有限元分析研究[J]. 原子能科学技术, 2024, 58(2): 257-271.
[72] Thurgood M J, George T L. COBRA/TRAC-A thermalhydraulic code for transient analysis of nuclear reactor vessels and primary coolant systems[EB/OL]. [2024-05-10]. https://www.nrc.gov/docs/ML0701/ML070160310.pdf.
[73] Jeong J J, Sim S K, Ban C H, et al. Assessment of the COBRA/RELAP5 code using the LOFT L2-3 largebreak loss-of-coolant experiment[J]. Annals of Nuclear Energy, 1997, 24(14): 1171-1182.
[74] Aumiller D L, Tomlinson E T, Bauer R C. A coupled RELAP5-3D/CFD methodology with a proof-of-principle calculation[J]. Nuclear Engineering and Design, 2001, 205(1/2): 83-90.
[75] Weaver W L, Tomlinson E T, Aumiller D L. A generic semi-implicit coupling methodology for use in RELAP5- 3D©[J]. Nuclear Engineering and Design, 2002, 211(1): 13-26.
[76] Anderson N, Hassan Y, Schultz R. Analysis of the hot gas flow in the outlet plenum of the very high temperature reactor using coupled RELAP5-3D system code and a CFD code[J]. Nuclear Engineering and Design, 2008, 238(1): 274-279.
[77] Bertolotto D, Manera A, Frey S, et al. Single-phase mixing studies by means of a directly coupled CFD/systemcode tool[J]. Annals of Nuclear Energy, 2009, 36(3): 310-316.
[78] Park I K, Lee J R, Lee S W, et al. An implicit code coupling of 1-D system code and 3-D in-house CFD code for multi-scaled simulations of nuclear reactor transients [J]. Annals of Nuclear Energy, 2013, 59: 80-91.
[79] Papukchiev A, Jeltsov M, Kööp K, et al. Comparison of different coupling CFD-STH approaches for pre-test analysis of a TALL-3D experiment[J]. Nuclear Engineering and Design, 2015, 290: 135-143.
[80] Fanning T H, Thomas J W. Advances in coupled safety modeling using systems analysis and high-fidelity methods[J]. Engineering, Physics, 2010, doi: 10.2172/982349.
[81] Jeltsov M, Kööp K, Kudinov P, et al. Development of a domain overlapping coupling methodology for STH/CFD analysis of heavy liquid metal thermal-hydraulics[C]// 15th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, 2013.
[82] Bavière R, Tauveron N, Perdu F, et al. A first system/ CFD coupled simulation of a complete nuclear reactor transient using CATHARE2 and TRIO_U. Preliminary validation on the Phénix Reactor Natural Circulation Test[J]. Nuclear Engineering and Design, 2014, 277: 124-137.
[83] Pialla D, Tenchine D, Li S, et al. Overview of the system alone and system/CFD coupled calculations of the PHENIX Natural Circulation Test within the THINS project[J]. Nuclear Engineering and Design, 2015, 290: 78-86.
[84] 杨帅. 基于MOC-CFD耦合方法的泵送系统瞬态特性研究[D]. 杭州: 浙江大学, 2015.
[85] 刘余, 张虹, 贾宝山. 核反应堆热工水力多尺度耦合模拟初步研究[J]. 核动力工程, 2010, 31(增刊1): 11-15.
[86] 贾斌, 马帅, 史强, 等. 非能动压水堆热工水力多尺度耦合计算分析研究[J]. 核科学与工程, 2018, 38(5): 763-773.
[87] 李书舟. 铅基快堆子通道耦合分析方法研究及应用[D]. 合肥: 中国科学技术大学, 2017.
[88] 桂民洋, 田文喜, 吴迪, 等. 子通道程序与CFD程序的耦 合方 法研 究[J]. 原子 能科 学技 术, 2018, 52(11): 1962-1967.
[89] 宋诗阳, 程懋松, 林铭, 等. 基于RELAP5和子通道程序的熔盐冷却快堆多尺度热工流体耦合程序开发及应用[J]. 核技术, 2022, 45(7): 88-98.
[90] 蔡伟华, 李智明, 崔军, 等. 含3×3花瓣形燃料棒组件的自然循环系统多尺度耦合模拟研究[J]. 工程热物理学报, 2024, 45(1): 32-39.
[91] 美国核管理委员会. Digital twins[EB/OL]. [2024-05- 01](2023-12-13). https://www.nrc.gov/reactors/power/digital-twins.html.
[92] 伍浩松, 孟雨晨. 美爱达荷首次示范微堆数字孪生技术[J]. 国外核新闻, 2022(8): 13.
[93] Department of Energy. Idaho national laboratory demonstrates first digital twin of a simulated microreactor[EB/ OL]. [2024-05-01](2022-07-14). https://www.energy.gov /ne/articles/idaho-national-laboratory-demonstrates-first -digital-twin-simulated-microreactor.
[94] Energynews. EDF's digital reactors ready for the end of 2023?[EB/OL]. [2024-05-10]. https://energynews.pro/en/ edfs-digital-reactors-ready-for-the-end-of-2023.
[95] 肖朝凡, 王兴春. 法企合作开发超小型模块堆[J]. 国外核新闻, 2022(1): 20.
[96] 王树, 李颖涵. 加积极推动先进制造技术在核工业的应用[J]. 国外核新闻, 2022(4): 23-25.
[97] 中核集团与北京航空航天大学核工业数字孪生工程技术 联合 实验 室正 式揭 牌! [EB/OL]. [2024-05-01] (2022-10-19). https://news.bjx.com.cn/html/20221019/1- 262138.shtml.
[98] 中国核能行业协会. 中国广核集团数字化转型探索与实践 [EB/OL]. [2024-05-01] (2022-05-30). http://heneng. net.cn/home/zc/infotwo/id/66460/sid/9/catId/162.html.
[99] 刘文倩, 韩利峰, 黄丽, 等. 实时在线监控系统的三维可视化方案[J]. 计算机应用, 2022, 42(增刊1): 265-270.
[100] Kusiak A. Smart manufacturing must embrace big data [J]. Nature, 2017, 544(7648): 23-25.
[101] Pla P, Annunziato A, Addabbo C, et al. Preservation and use of integral system test facilities data: The experience of the LOBI data and the STRESA database[J]. Progress in Nuclear Energy, 2012, 56: 79-90.
[102] Reeder D L, Berta V T. Loss-of-fluid test (LOFT) facility[R]. Boston: Idaho National Engineering Lab, 1979.
[103] Mandl R, Weiss P. PKL tests on energy transfer mechanisms during small-break LOCAs[J]. Nuclear Safety, 1982, 23(2): 146-158.
[104] Kukita Y, Yonomoto T, Asaka H, et al. ROSA/AP600 testing: Facility modifications and initial test results[R]. Bethesda: US Nuclear Regulatory Commission, 1994.
[105] Xu C, Shi G, Pu F. Analysis of small-break LOCA at ACME test facility using RELAP5/MOD3[C]//Proceedings of 201624th International Conference on Nuclear Engineering, 2016.
[106] 经济合作与发展组织/国家能源局. TIETHYS数据库[EB/OL]. [2024-05-10]. https://mdep.oecd-nea.org/tiethysweb.
[107] Rohatgi U, Dyrda J, Soppera N. The international experimental thermal hydraulic systems database (TIETHYS): A new NEA validation tool[C]//Proceedings of 201826th International Conference on Nuclear Engineering, 2018.
[108] Zabirov A R, Smirnova A A, Feofilaktova Y M, et al. Russian experimental database for validation of computer codes used for safety analysis of nuclear facilities[J]. Progress in Nuclear Energy, 2020, 118: 103061.
[109] Nuclear and Industrial Engineering. Nine highlights[EB/ OL]. [2024-05-10]. https://www.nineeng.com/.
[110] 核能局(NEA). SCCRED架构在LOFT上的演示[EB/ OL]. [2024-05-10]. https://www. oecd-nea. org/tiethys/ references/IET/LOFT/SCCRED/index.html.
[111] Petruzzi A, D'Auria F. Standardized consolidated calculated and reference experimental database (SCCRED): A supporting tool for V&V and uncertainty evaluation of best-estimate system codes for licensing applications [J]. Nuclear Science and Engineering, 2016, 182(1): 13-53.
[112] Pla P, Ammirabile L, Annunziato A. The Stresa database: A token for the future[J]. Annals of Nuclear Energy, 2013, 62: 8-16.
[113] 国际原子能机构. SANIS数据库[EB/OL]. [2024-05-10]. https://nucleus. iaea. org/sites/connect/sanispublic/Pages/ default.aspx.
[114] Weirs V G, Mousseau K C, Johnson R W, et al. Nuclear Energy-Knowledge Base for Advanced Modeling and Simulation (NE-KAMS) code verification and validation data standards and requirements: Fluid dynamics Version 1.0[J]. Office of scientific & technical information technical reports, 2024. DOI:10.2172/1033905.
[115] Nuclear Energy Advanced Modeling and Simulation. What does the NEAMS program do? [EB/OL]. [2024- 05-10]. https://neams.inl.gov/.
[116] Johnson R, Mousseau K, Lee H. Strategic plan for nuclear energy: Knowledge base for advanced modeling and simulation (NE-KAMS) [J]. Physics, Engineering, 2011. DOI:10.2172/1033891.
[117] 芬兰拉彭兰塔工业大学. EDS数据库[EB/OL]. [2024- 05-10]. https://ydin.pc.lut.fi/EDS.
[118] 葛炜, 杨燕华, 刘飒, 等. 大型先进压水堆核电站关键设计软件自主化与COSINE软件包研发[J]. 中国能源, 2016, 38(7): 39-43.
[119] 中核. 我国首套自主核电软件包和一体化软件集成平台发布[J]. 军民两用技术与产品, 2016(1): 35.
[120] 刘盈, 冯波, 曹国海, 等. 核反应堆设计软件验证数据库系统的研制[J]. 核动力工程, 2019, 40(1): 135-139.
[121] 金俊玲, 董玉杰, 马远乐. 高温气冷堆热工水力计算数据管理系统的分析和设计[J]. 科技导报, 2006, 24(8): 56-58.
[122] 巫英伟, 张亚培, 陈荣华, 等. 反应堆严重事故分析程序研发进展[J]. 中国基础科学, 2021, 23(3): 28-33.
[123] 葛智刚, 续瑞瑞, 刘萍. 核数据评价与中国评价核数据库CENDL[J]. 原子能科学技术, 2022, 56(5): 783- 797.
[124] 常明凯, 胡娜, 李遥, 等. Eu(III)在蒙脱石上的吸附及碳酸根和磷酸根对其吸附的影响[J]. 物理化学学报, 2022, 38(3): 74-82.
[125] 赫东煜, 李研, 王钰淇, 等. 放射性废水典型核素去除研究进展[J]. 现代化工, 2022, 42(12): 64-69.
[126] Pabby A K, Swain B, Sonar N L, et al. Radioactive waste processing using membranes: State of the art technology, challenges and perspectives[J]. Separation & Purification Reviews, 2022, 51(2): 143-173.
[127] Abbas T K, Rashid K T, Alsalhy Q F. NaY zeolitepolyethersulfone-modified membranes for the removal of cesium-137 from liquid radioactive waste[J]. Chemical Engineering Research and Design, 2022, 179: 535- 548.
[128] 李冠超, 孙功明, 钟丽艳, 等. 高岭土负载钛酸钙复合材料对放射性废水中U(Ⅵ)的吸附性能与机理[J]. 有色金属(冶炼部分), 2022(12): 109-115.
[129] Fuks L, Miśkiewicz A, Zakrzewska-Kołtuniewicz G. Sorption-assisted ultrafiltration hybrid method for treatment of the radioactive aqueous solutions[J]. Chemistry, 2022, 4(3): 1076-1091.
[130] Thakur D A, Sonar N L, Shukla R, et al. Evaluation of cerium-zirconium mixed oxides for separation of 125Sb from radioactive liquid waste[J]. Journal of Radioanalytical and Nuclear Chemistry, 2022, 331(7): 2903-2909.
[131] Hao M J, Chen Z S, Yang H, et al. Pyridinium saltbased covalent organic framework with well-defined nanochannels for efficient and selective capture of aqueous 99TcO 4-[J]. Science Bulletin, 2022, 67(9): 924- 932.
[132] 聂小琴, 董发勤, 刘宁, 等. 酵母菌对锕系核素239Pu的富集行为及减量化研究[J]. 环境科学研究, 2022, 35(8): 1827-1835.
[133] Penzin R A, Milyutin V V, Svittsov A A. Promising technologies for liquid radwaste management in the nuclear industry[J]. Atomic Energy, 2022, 132(1): 24-26.
[134] 张蔚华, 张一民, 郭海峰, 等. 运行核电厂放射性固体废物管理实践与探讨1[J]. 核安全, 2022, 21(1): 19- 25.
[135] 陈权, 毕颖光, 李华辉. 压水堆核电厂放射性固体废物处理与整备技术[J]. 产业与科技论坛, 2022, 21(20): 36-39.
[136] Gonçalves M F S, Petraconi Filho G, Couto A A, et al. Evaluation of thermal plasma process for treatment disposal of solid radioactive waste[J]. Journal of Environmental Management, 2022, 311: 114895.
[137] do Nascimento Linhares V, Goulart de Araujo L, Vicente R, et al. Enhanced removal of radium from radioactive oil sludge using microwave irradiation and non-ionic surfactant[J]. Journal of Petroleum Science and Engineering, 2022, 211: 110168.
[138] 李虹羽, 任力, 廖能斌, 等. 蒸汽重整技术处理放射性废树脂初步经济性探讨[J]. 产业科技创新, 2022(4): 73-75.
[139] 韦琦, 耿海宁, 马浩森, 等. 低碱度水泥基材料固化模拟放射性焚烧灰性能与机理研究[J]. 硅酸盐通报, 2022, 41(1): 182-191.
[140] Touite A, Labied S, Ghailassi T E, et al. Treatment of organic radioactive waste by stabilization/solidification into a cement/Alumina based mortar[J]. Materials Today: Proceedings, 2022, 58: 1485-1489.
[141] Akiyama D, Duhamel C, Kirishima A. Immobilization of radioactive waste by an aluminum silicate matrix formed from fly ash or bentonite[J]. Journal of Nuclear Materials, 2023, 574: 154151.
[142] Fabian M, Tolnai I, Kis Z, et al. Characterization of simulated liquid radioactive waste in a new type of cement mixture[J]. ACS Omega, 2022, 7(41): 36108-36116.
[143] Osawa N, Kubota M, Wu H, et al. Development of N, N, N', N'-tetra-2-ethylhexyl-thiodiglycolamide silicabased adsorbent to separate useful metals from simulated high-level liquid waste[J]. Journal of Chromatography A, 2022, 1678: 463353.
[144] 孙丹丹, 王鑫, 董文曙. 核电厂放射性废液水泥固化体的制备[J]. 核化学与放射化学, 2022, 44(4): 467- 473.
[145] 王亚光, 张劲松, 陈云明, 等. 核设施中放射性含硼废液的固化技术[J]. 工业技术创新, 2022, 9(3): 91-97.
[146] 刘春雨, 周东升, 李丽丽. 模拟不可燃放射性废物等离子体熔融处理试验研究[J]. 核化学与放射化学, 2022, 44(5): 542-548.
[147] Yakunin S A. Cesium in gaseous emissions from the vitrification technology of radioactive waste (review of scientific and technical information)[J]. Radiochemistry, 2022, 64(4): 482-490.
[148] Sonar N L, Sen S, Thakur D A, et al. Treatment feasibility of highly alkaline and highly radioactive liquid waste—a novel approach[J]. Journal of Radioanalytical and Nuclear Chemistry, 2022, 331(2): 739-746.
[149] Inoue H, Watanabe Y, Chung J, et al. Recovery of Se, Zr, Pd, and Cs from simulated high-level radioactive waste glass through phase separation[J]. International Journal of Applied Glass Science, 2022, 13(4): 501-513.
[150] 徐卫东. 浅析高放废液玻璃固化技术[J]. 中国建材科技, 2022, 31(3): 65-69.
[151] Lago D C, Sánchez A D, Prado M O. Immobilization of a simulated high-level waste in an yttrium aluminosilicate glass. Self-heating assessment[J]. Journal of the European Ceramic Society, 2022, 42(16): 7561-7569.
[152] 许强伟, 方升, 刘晨, 等. 模拟高放废物深地质处置条件下Se在铁基材料上的氧化还原行为[J]. 核化学与放射化学, 2022, 44(6): 627-634.
[153] 陆燕, 陈亚君, 单琳. 全球乏燃料与高放废物管理现状[J]. 国外核新闻, 2022(3): 26-28.
[154] Št'ástka J, Hanusová I, Hausmannová L, et al. In-situ testing of Czech bentonite for radioactive waste disposal in Mock-up Josef experiment[J]. Annals of Nuclear Energy, 2022, 172: 109059.
[155] 王驹, 苏锐, 陈亮, 等. 中国高放废物地质处置地下实验室场址筛选[J]. 世界核地质科学, 2022, 39(1): 1- 13.
[156] 王驹. 夯实高放废物处置技术根基保障核燃料循环产业可持续发展[J]. 国防科技工业, 2022(9): 40-42.