Special to S&T Review

Frontiers and review in global nuclear energy science and technology

  • YANG Jun ,
  • SUN Peijie ,
  • PENG Cuiting ,
  • HU Mengyan ,
  • HUANG Xi ,
  • ZHANG Weixuan ,
  • HUANG Yuhang ,
  • LUO Zhipeng ,
  • XU Lejin
Expand
  • Department of Nuclear Engineering and Technology, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

Received date: 2023-04-24

  Revised date: 2024-05-23

  Online published: 2025-01-06

Abstract

This paper summarizes the recent progress of global nuclear energy science and technology, focusing on nuclear fission and fusion, coupling utilization of nuclear energy and other energies, frontier technology of nuclear energy informatization and nuclear waste treatment. The global research and development of nuclear energy is developing steadily. Nuclear power technology will gradually realize the development from the second generation to the third generation. Small reactors have good applications in the sea, land and air. The progress of nuclear fusion technology has been introduced, including high temperature superconducting fusion, laser ignition inertial confinement fusion, Tokamak fusion device, International Thermonuclear Experimental Reactor and Chinese Fusion Engineering Testing Reactor. The coupling utilization of nuclear energy and other energies such as hydrogen energy and solar energy, provides a new solution for the development of renewable energies and the realization of carbon peaking and carbon neutrality goals. High-precision multi-physical field coupling analysis and calculation, digital twin technology, informatization and database construction are important directions for sustainable development of nuclear energy in the future. The latest advances in radioactive waste treatment and disposal technologies have been summarized, including the reduction and solidification of low- and medium-level radioactive waste, radionuclide removal and vitrification of high-level radioactive waste, and treatment and disposal of spent fuel. The overall situation shows that nuclear energy is still an important part of the global energy structure.

Cite this article

YANG Jun , SUN Peijie , PENG Cuiting , HU Mengyan , HUANG Xi , ZHANG Weixuan , HUANG Yuhang , LUO Zhipeng , XU Lejin . Frontiers and review in global nuclear energy science and technology[J]. Science & Technology Review, 2024 , 42(23) : 7 -30 . DOI: 10.3981/j.issn.1000-7857.2023.04.00630

References

[1] 中核战略规划研究总院. 2022年世界核能发展回顾—— 产业 发展 篇[EB/OL]. (2023-01-30) [2023-02-02]. https://www. atominfo. com. cn/zhzlghyjzy/yjbg/1287156/index.html.
[2] 中核战略规划研究总院. 2022年世界核能发展回顾——政策篇[EB/OL]. (2023-01-06) [2023-02-02]. https: //www. atominfo. com. cn/zhzlghyjzy/yjbg/1284592/index. html.
[3] 中国科学院科技战略咨询研究院. 英国发布《民用核电2050路 线图 》[EB/OL]. (2023-04-11) [2024-05-04]. https://www.casisd.cas.cn/zkcg/ydkb/kjqykb/2024/kjqykb2- 403/202404/t20240411_7090265.html.
[4] 中国核工业. 韩国核电“走出去”的野心有多大[EB/OL]. (2023-04-07) [2024-05-04]. https://www. thepaper. cn/ newsDetail_forward_22611438.
[5] 国家核安全局. 我国高温气冷堆发展战略研究[EB/OL]. (2023-12-07) [2024-05-04]. https://nnsa. mee. gov. cn/ztzl/ xgzgt/hyfsaqkp/kptw/202312/t20231207_1058444.html.
[6] 上海市国资委. 钍基熔盐实验堆于甘肃武威建成,上海建工将与中科院上海应物所继续深入合作[EB/OL]. (2023-10-23)[2024-05-04]. https://www.shanghai.gov.cn/ nw31406/20231023/608defcbbb4c4d2abc4c274ad9a6d23a. html.
[7] 蔡翔舟, 戴志敏, 徐洪杰. 钍基熔盐堆核能系统[J]. 物理, 2016, 45(9): 578-590.
[8] 美国核管会发布NuScale 50MW小堆设计最终认证[EB/ OL]. (2023-01-30)[2023-02-02]. https://power.in-en.com/ html/power-2422656.shtml.
[9] 中核战略规划研究总院. 2022年世界核能发展回顾—— 科技 创新 篇[EB/OL]. (2023-01-09) [2023-02-02]. https://www. atominfo. com. cn/zhzlghyjzy/yjbg/1284874/index.html.
[10] 全球 首座 浮动 核电 站正 式投 入商 业运 营[EB/OL]. [2020-05-25]. http://www. chinapower. com. cn/xw/gjxw/ 20200525/19857.html.
[11] 宋丹戎, 李庆, 秦冬, 等.“玲龙一号”反应堆研发关键技术: 堆芯设计与安全设计[J]. 核动力工程, 2021, 42(4): 1-5.
[12] 吴宜灿, 刘超, 金鸣, 等. 兆瓦级锂冷空间核反应堆电源 方案 设计 与研 发进 展[J]. 中国 科学(技术 科学), 2024, 54(3): 365-376.
[13] Kang X, Tong Y J, Wu W, et al. Transient multi-physics behavior of an insert high temperature superconducting no-insulation coil in hybrid superconducting magnets with inductive coupling[J]. Applied Mathematics and Mechanics, 2023, 44(2): 255-272.
[14] 世界首次激光核聚变点火成功,核聚变两大技术路线谁将胜出[EB/OL]. (2022-12-15)[2022-12-15]. https:// www.thepaper.cn/newsDetail_forward_21177158.
[15] 聚变能产业协会. The global fusion industry in 2023[EB/OL]. [2024-05-10]. https://www. fusionindustryassociation.org/wp-content/uploads/2023/07/FIA%E2%80%- 932023-FINAL.pdf.
[16] 高翔, 万元熙, 丁宁, 等. 可控核聚变科学技术前沿问题和进展[J]. 中国工程科学, 2018, 20(3): 25-31.
[17] 应强强. 我国人造太阳运行时间突破千秒[J]. 高中生之友, 2022, 539(13): 45.
[18] 我国掌握可控核聚变高约束先进控制技术[EB/OL]. (2023-08-29) [2024-05-10]. https://nnsa. mee. gov. cn/ ywdt/hyzx/202308/t20230829_1039616.html.
[19] 余振雄. J-TEXT装置ECHR控制系统研究[D]. 武汉: 华中科技大学, 2017.
[20] 万宝年, 徐国盛. EAST全超导托卡马克高约束稳态运行实验研究进展[J]. 中国科学(物理学力学天文学), 2019, 49(4): 43-55.
[21] 李建刚. 托卡马克研究的现状及发展[J]. 物理, 2016, 45(2): 88-97.
[22] 于浩洋, 潘建均, 李昱昉, 等. 新形势下核聚变标准化工作的问题与建议[J]. 标准科学, 2022(增刊1): 49-53.
[23] Green B J. The European fusion research and development programme and the ITER project[J]. Journal of Physics: Conference Series, 2006, 44: 1-9.
[24] 谌继明. 填补国际核聚变标准空白引领中国核领域标准走出去: 专访《核聚变堆高温承压部件的热氦检漏方法》项目负责人谌继明[J]. 核标准计量与质量, 2022(3): 2-6.
[25] 陈科.“人造太阳”ITER核心部件首件中国制造完成[N]. 科技日报, 2022-11-23(1).
[26] 本刊编辑部. 2023十大科技前沿趋势[J]. 科技智囊, 2023(1): 1-4.
[27] 向魁, 梁展鹏, 李华, 等. CFETR聚变发电厂概念设计技术研究[J]. 南方能源建设, 2022, 9(2): 45-52.
[28] 张国书. 核聚变能源的开发现状及新进展[J]. 中国核电, 2018, 11(1): 30-34.
[29] 徐冠华, 刘琦岩, 罗晖, 等. 热核聚变实验堆开启“无限能源”时代[J]. 华东科技, 2022(12): 18-21.
[30] 中科院等离子体物理研究所. 聚变堆主机关键系统材料 综合 性能 研究 平台 完成 首批 系统 验收 [EB/OL]. (2023-12-31)[2024-05-04]. http://www.ipp.cas.cn/xwdt/ kydt/202312/t20231231_766918.html.
[31] 刘畅司晨, 王夙素.“橘子瓣”状实验平台已基本落成[N]. 合肥晚报, 2022-11-29(A02).
[32] 张平, 于波, 徐景明. 核能制氢技术的发展[J]. 核化学与放射化学, 2011, 33(4): 193-203.
[33] El-Emam R S, Zamfirescu C, Gabriel K S. Hydrogen production pathways for Generation-IV reactors[M]// Handbook of Generation IV Nuclear Reactors. Amsterdam: Elsevier, 2023: 665-680.
[34] 李晨曦, 伍浩松. 主要核工业国家大力推进核能制氢[J]. 国外核新闻, 2022(12): 22-25.
[35] Yang X C, Yu G C, Xu L J, et al. Degradation of the mixed organic solvents of tributyl phosphate and n-dodecane by heterogeneous Fenton-like oxidation using nanoscale zero-valent iron as the catalyst[J]. Chemosphere, 2022, 292: 133449.
[36] Wang Q, Macián-Juan R. Thermodynamic analysis of two novel very high temperature gas-cooled reactorbased hydrogen-electricity cogeneration systems using sulfur-iodine cycle and gas-steam combined cycle[J]. Energy, 2022, 256: 124671.
[37] Ni H, Qu X H, Peng W, et al. Analysis of internal heat exchange network and hydrogen production efficiency of iodine-sulfur cycle for nuclear hydrogen production[J]. International Journal of Energy Research, 2022, 46(11): 15665-15682.
[38] 曹军文, 覃祥富, 胡轶坤, 等. 高温气冷堆耦合高温电解规模化制氢系统仿真[J]. 清华大学学报(自然科学版), 2023, 63(8): 1246-1256.
[39] 曲新鹤, 胡庆祥, 倪航, 等. 基于高温气冷堆的制氢耦合炼钢系统初步设计和能量分析[J]. 清华大学学报(自然科学版), 2023, 63(8): 1236-1245.
[40] 张贤, 胡娜, 吕彩霞, 等. 一种太阳能辅助压水堆核电站二回路发电系统及方法: CN113931709A[P]. 2022- 01-14.
[41] 孙凯强, 张义明, 孙强, 等. 一种基于核电、风电相结合的海上制氢制氨储舱平台: CN215911912U[P]. 2022- 02-25.
[42] Pombo D V, Bindner H W, Spataru S V, et al. Machine learning-driven energy management of a hybrid nuclearwind-solar-desalination plant[J]. Desalination, 2022, 537: 115871.
[43] 杨继明, 张澈, 张彬, 等. 海上风电核能互补运行系统及方法: CN202111365399X[P]. 2022-03-15.
[44] Chen Q Q, Lü M, Gu Y, et al. Hybrid energy system for a coal-based chemical industry[J]. Joule, 2018, 2(4): 607-620.
[45] 陈倩倩, 孙予罕, 唐志永, 等. 一种核能-煤生产燃料化学 品的 零碳 排放 系统 及方 法: CN108277047B[P]. 2020-05-15.
[46] D'auria F, Bousbia S A, Galassi G M, et al. CRISSUES, Neutronics/thermal-hydraulics coupling in LWR technology[R]. Paris: Nuclear Energy Agency of the OECD (NEA), 2004.
[47] Chauliac C, Aragonés J M, Bestion D, et al. NURESIM– A European simulation platform for nuclear reactor safety: Multi-scale and multi-physics calculations, sensitivity and uncertainty analysis[J]. Nuclear Engineering and Design, 2011, 241(9): 3416-3426.
[48] Szilard R, Zhang H, Kothe D, et al.The Consortium for advanced simulation of light water reactors[C]//Enlarged Halden Programme Group Meeting. Idaho Falls, Idaho: Idaho National Laboratory, 2011.
[49] Bradley K. NEAMS: The nuclear energy advanced modeling and simulation program[J]. Office of Scientific & Technical Information Technical Reports, 2013, doi: 10.2172/1093526.
[50] 杨文, 胡长军, 刘天才, 等. 数值反应堆及CVR1.0研究进展[J]. 原子能科学技术, 2019, 53(10): 1821-1832.
[51] Belcourt N, Bartlett R, Pawlowski R, et al. A theory manual for multi-physics code coupling in LIME[J]. Physics, Computer Science, 2011, doi: 10.2172/1011710.
[52] Gaston D, Newman C, Hansen G, et al. MOOSE: A parallel computational framework for coupled systems of nonlinear equations[J]. Nuclear Engineering and Design, 2009, 239(10): 1768-1778.
[53] Yamaji A, Oka Y, Koshizuka S. Three-dimensional core design of high temperature supercritical-pressure light water reactor with neutronic and thermal-hydraulic coupling[J]. Journal of Nuclear Science and Technology, 2005, 42(1): 8-19.
[54] Yoo J, Ishiwatari Y, Oka Y, et al. Conceptual design of compact supercritical water-cooled fast reactor with thermal hydraulic coupling[J]. Annals of Nuclear Energy, 2006, 33(11/12): 945-956.
[55] Safarzadeh O, Shirani A S, Minuchehr A, et al. Coupled neutronic/thermo-hydraulic analysis of water/Al2O3 nanofluids in a VVER-1000 reactor[J]. Annals of Nuclear Energy, 2014, 65: 72-77.
[56] Périn Y, Velkov K. CTF/DYN3D multi-scale coupled simulation of a rod ejection transient on the NURESIM platform[J]. Nuclear Engineering and Technology, 2017, 49(6): 1339-1345.
[57] Waata C. Coupled neutronics thermal hydraulics analysis of a high-performance light-water reactor fuel assembly [J]. Physics, 2006, doi: 10.18419/OPUS-1695.
[58] Vazquez M, Tsige-Tamirat H, Ammirabile L, et al. Coupled neutronics thermal-hydraulics analysis using Monte Carlo and sub-channel codes[J]. Nuclear Engineering and Design, 2012, 250: 403-411.
[59] Gurecky W, Schneider E. Development of an MCNP6- ANSYS FLUENT multiphysics coupling capability[C]// Proceedings of 201624th International Conference on Nuclear Engineering, 2016.
[60] 彭木彰, 张全, 王国力, 等. TISKTH-3一部中子学和热工水力学耦合的轻水堆堆芯瞬态分析程序[J]. 核科学与工程, 1988(1): 19-32.
[61] 陈新辉, 赵兆颐. 完全三维堆芯中子学/热工水力学耦合程序TISKTH-4[J]. 核科学与工程, 1992, 12(2): 110- 115.
[62] 廖承奎. 三维节块中子动力学方程组的数值解法及物理与热工-水力耦合瞬态过程的数值计算的研究[D]. 西安: 西安交通大学, 2002.
[63] 赵文博. 瞬态节块格林函数方法及其与热工-水力耦合研究[D]. 北京: 清华大学, 2012.
[64] 张阳, 俞楼涵榕, 余大利, 等. 基于蒙特卡罗和CFD耦合模拟的空间锂冷核反应堆设计分析[J]. 核科学与工程, 2022, 42(1): 28-33.
[65] 张汉, 郭炯, 邬颖杰, 等. 高温气冷堆全耦合系统直接联立求解的方法研究和程序开发[J]. 原子能科学技术, 2022, 56(2): 271-284.
[66] 左献迪. 多通道液态燃料熔盐堆物理-热工耦合研究[D]. 上海: 中国科学院大学(中国科学院上海应用物理研究所), 2022.
[67] 钱冠华, 于涛, 杨涛, 等. 基于统一框架的多物理耦合方案研究与平台开发[J]. 核动力工程, 2022, 43(6): 51- 60.
[68] Xie Q X, Li W, Guan C R, et al. Development of 3D transient neutronics and thermal-hydraulics coupling procedure and its application to a fuel pin analysis[J]. Nuclear Engineering and Design, 2023, 404: 112164.
[69] 翁名辉. 基于COMSOL的蒙卡-有限元核热力耦合方法研究[D]. 北京: 华北电力大学, 2022.
[70] 吴明宇, 朱迎, 卢旭, 等. 反应堆核-热-燃耗多物理耦合框架研究与应用[J]. 原子能科学技术, 2021, 55(9): 1643-1649.
[71] 巫英伟, 贺亚男, 章静, 等. 核反应堆系统多维度多物理场耦合有限元分析研究[J]. 原子能科学技术, 2024, 58(2): 257-271.
[72] Thurgood M J, George T L. COBRA/TRAC-A thermalhydraulic code for transient analysis of nuclear reactor vessels and primary coolant systems[EB/OL]. [2024-05-10]. https://www.nrc.gov/docs/ML0701/ML070160310.pdf.
[73] Jeong J J, Sim S K, Ban C H, et al. Assessment of the COBRA/RELAP5 code using the LOFT L2-3 largebreak loss-of-coolant experiment[J]. Annals of Nuclear Energy, 1997, 24(14): 1171-1182.
[74] Aumiller D L, Tomlinson E T, Bauer R C. A coupled RELAP5-3D/CFD methodology with a proof-of-principle calculation[J]. Nuclear Engineering and Design, 2001, 205(1/2): 83-90.
[75] Weaver W L, Tomlinson E T, Aumiller D L. A generic semi-implicit coupling methodology for use in RELAP5- 3D©[J]. Nuclear Engineering and Design, 2002, 211(1): 13-26.
[76] Anderson N, Hassan Y, Schultz R. Analysis of the hot gas flow in the outlet plenum of the very high temperature reactor using coupled RELAP5-3D system code and a CFD code[J]. Nuclear Engineering and Design, 2008, 238(1): 274-279.
[77] Bertolotto D, Manera A, Frey S, et al. Single-phase mixing studies by means of a directly coupled CFD/systemcode tool[J]. Annals of Nuclear Energy, 2009, 36(3): 310-316.
[78] Park I K, Lee J R, Lee S W, et al. An implicit code coupling of 1-D system code and 3-D in-house CFD code for multi-scaled simulations of nuclear reactor transients [J]. Annals of Nuclear Energy, 2013, 59: 80-91.
[79] Papukchiev A, Jeltsov M, Kööp K, et al. Comparison of different coupling CFD-STH approaches for pre-test analysis of a TALL-3D experiment[J]. Nuclear Engineering and Design, 2015, 290: 135-143.
[80] Fanning T H, Thomas J W. Advances in coupled safety modeling using systems analysis and high-fidelity methods[J]. Engineering, Physics, 2010, doi: 10.2172/982349.
[81] Jeltsov M, Kööp K, Kudinov P, et al. Development of a domain overlapping coupling methodology for STH/CFD analysis of heavy liquid metal thermal-hydraulics[C]// 15th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, 2013.
[82] Bavière R, Tauveron N, Perdu F, et al. A first system/ CFD coupled simulation of a complete nuclear reactor transient using CATHARE2 and TRIO_U. Preliminary validation on the Phénix Reactor Natural Circulation Test[J]. Nuclear Engineering and Design, 2014, 277: 124-137.
[83] Pialla D, Tenchine D, Li S, et al. Overview of the system alone and system/CFD coupled calculations of the PHENIX Natural Circulation Test within the THINS project[J]. Nuclear Engineering and Design, 2015, 290: 78-86.
[84] 杨帅. 基于MOC-CFD耦合方法的泵送系统瞬态特性研究[D]. 杭州: 浙江大学, 2015.
[85] 刘余, 张虹, 贾宝山. 核反应堆热工水力多尺度耦合模拟初步研究[J]. 核动力工程, 2010, 31(增刊1): 11-15.
[86] 贾斌, 马帅, 史强, 等. 非能动压水堆热工水力多尺度耦合计算分析研究[J]. 核科学与工程, 2018, 38(5): 763-773.
[87] 李书舟. 铅基快堆子通道耦合分析方法研究及应用[D]. 合肥: 中国科学技术大学, 2017.
[88] 桂民洋, 田文喜, 吴迪, 等. 子通道程序与CFD程序的耦 合方 法研 究[J]. 原子 能科 学技 术, 2018, 52(11): 1962-1967.
[89] 宋诗阳, 程懋松, 林铭, 等. 基于RELAP5和子通道程序的熔盐冷却快堆多尺度热工流体耦合程序开发及应用[J]. 核技术, 2022, 45(7): 88-98.
[90] 蔡伟华, 李智明, 崔军, 等. 含3×3花瓣形燃料棒组件的自然循环系统多尺度耦合模拟研究[J]. 工程热物理学报, 2024, 45(1): 32-39.
[91] 美国核管理委员会. Digital twins[EB/OL]. [2024-05- 01](2023-12-13). https://www.nrc.gov/reactors/power/digital-twins.html.
[92] 伍浩松, 孟雨晨. 美爱达荷首次示范微堆数字孪生技术[J]. 国外核新闻, 2022(8): 13.
[93] Department of Energy. Idaho national laboratory demonstrates first digital twin of a simulated microreactor[EB/ OL]. [2024-05-01](2022-07-14). https://www.energy.gov /ne/articles/idaho-national-laboratory-demonstrates-first -digital-twin-simulated-microreactor.
[94] Energynews. EDF's digital reactors ready for the end of 2023?[EB/OL]. [2024-05-10]. https://energynews.pro/en/ edfs-digital-reactors-ready-for-the-end-of-2023.
[95] 肖朝凡, 王兴春. 法企合作开发超小型模块堆[J]. 国外核新闻, 2022(1): 20.
[96] 王树, 李颖涵. 加积极推动先进制造技术在核工业的应用[J]. 国外核新闻, 2022(4): 23-25.
[97] 中核集团与北京航空航天大学核工业数字孪生工程技术 联合 实验 室正 式揭 牌! [EB/OL]. [2024-05-01] (2022-10-19). https://news.bjx.com.cn/html/20221019/1- 262138.shtml.
[98] 中国核能行业协会. 中国广核集团数字化转型探索与实践 [EB/OL]. [2024-05-01] (2022-05-30). http://heneng. net.cn/home/zc/infotwo/id/66460/sid/9/catId/162.html.
[99] 刘文倩, 韩利峰, 黄丽, 等. 实时在线监控系统的三维可视化方案[J]. 计算机应用, 2022, 42(增刊1): 265-270.
[100] Kusiak A. Smart manufacturing must embrace big data [J]. Nature, 2017, 544(7648): 23-25.
[101] Pla P, Annunziato A, Addabbo C, et al. Preservation and use of integral system test facilities data: The experience of the LOBI data and the STRESA database[J]. Progress in Nuclear Energy, 2012, 56: 79-90.
[102] Reeder D L, Berta V T. Loss-of-fluid test (LOFT) facility[R]. Boston: Idaho National Engineering Lab, 1979.
[103] Mandl R, Weiss P. PKL tests on energy transfer mechanisms during small-break LOCAs[J]. Nuclear Safety, 1982, 23(2): 146-158.
[104] Kukita Y, Yonomoto T, Asaka H, et al. ROSA/AP600 testing: Facility modifications and initial test results[R]. Bethesda: US Nuclear Regulatory Commission, 1994.
[105] Xu C, Shi G, Pu F. Analysis of small-break LOCA at ACME test facility using RELAP5/MOD3[C]//Proceedings of 201624th International Conference on Nuclear Engineering, 2016.
[106] 经济合作与发展组织/国家能源局. TIETHYS数据库[EB/OL]. [2024-05-10]. https://mdep.oecd-nea.org/tiethysweb.
[107] Rohatgi U, Dyrda J, Soppera N. The international experimental thermal hydraulic systems database (TIETHYS): A new NEA validation tool[C]//Proceedings of 201826th International Conference on Nuclear Engineering, 2018.
[108] Zabirov A R, Smirnova A A, Feofilaktova Y M, et al. Russian experimental database for validation of computer codes used for safety analysis of nuclear facilities[J]. Progress in Nuclear Energy, 2020, 118: 103061.
[109] Nuclear and Industrial Engineering. Nine highlights[EB/ OL]. [2024-05-10]. https://www.nineeng.com/.
[110] 核能局(NEA). SCCRED架构在LOFT上的演示[EB/ OL]. [2024-05-10]. https://www. oecd-nea. org/tiethys/ references/IET/LOFT/SCCRED/index.html.
[111] Petruzzi A, D'Auria F. Standardized consolidated calculated and reference experimental database (SCCRED): A supporting tool for V&V and uncertainty evaluation of best-estimate system codes for licensing applications [J]. Nuclear Science and Engineering, 2016, 182(1): 13-53.
[112] Pla P, Ammirabile L, Annunziato A. The Stresa database: A token for the future[J]. Annals of Nuclear Energy, 2013, 62: 8-16.
[113] 国际原子能机构. SANIS数据库[EB/OL]. [2024-05-10]. https://nucleus. iaea. org/sites/connect/sanispublic/Pages/ default.aspx.
[114] Weirs V G, Mousseau K C, Johnson R W, et al. Nuclear Energy-Knowledge Base for Advanced Modeling and Simulation (NE-KAMS) code verification and validation data standards and requirements: Fluid dynamics Version 1.0[J]. Office of scientific & technical information technical reports, 2024. DOI:10.2172/1033905.
[115] Nuclear Energy Advanced Modeling and Simulation. What does the NEAMS program do? [EB/OL]. [2024- 05-10]. https://neams.inl.gov/.
[116] Johnson R, Mousseau K, Lee H. Strategic plan for nuclear energy: Knowledge base for advanced modeling and simulation (NE-KAMS) [J]. Physics, Engineering, 2011. DOI:10.2172/1033891.
[117] 芬兰拉彭兰塔工业大学. EDS数据库[EB/OL]. [2024- 05-10]. https://ydin.pc.lut.fi/EDS.
[118] 葛炜, 杨燕华, 刘飒, 等. 大型先进压水堆核电站关键设计软件自主化与COSINE软件包研发[J]. 中国能源, 2016, 38(7): 39-43.
[119] 中核. 我国首套自主核电软件包和一体化软件集成平台发布[J]. 军民两用技术与产品, 2016(1): 35.
[120] 刘盈, 冯波, 曹国海, 等. 核反应堆设计软件验证数据库系统的研制[J]. 核动力工程, 2019, 40(1): 135-139.
[121] 金俊玲, 董玉杰, 马远乐. 高温气冷堆热工水力计算数据管理系统的分析和设计[J]. 科技导报, 2006, 24(8): 56-58.
[122] 巫英伟, 张亚培, 陈荣华, 等. 反应堆严重事故分析程序研发进展[J]. 中国基础科学, 2021, 23(3): 28-33.
[123] 葛智刚, 续瑞瑞, 刘萍. 核数据评价与中国评价核数据库CENDL[J]. 原子能科学技术, 2022, 56(5): 783- 797.
[124] 常明凯, 胡娜, 李遥, 等. Eu(III)在蒙脱石上的吸附及碳酸根和磷酸根对其吸附的影响[J]. 物理化学学报, 2022, 38(3): 74-82.
[125] 赫东煜, 李研, 王钰淇, 等. 放射性废水典型核素去除研究进展[J]. 现代化工, 2022, 42(12): 64-69.
[126] Pabby A K, Swain B, Sonar N L, et al. Radioactive waste processing using membranes: State of the art technology, challenges and perspectives[J]. Separation & Purification Reviews, 2022, 51(2): 143-173.
[127] Abbas T K, Rashid K T, Alsalhy Q F. NaY zeolitepolyethersulfone-modified membranes for the removal of cesium-137 from liquid radioactive waste[J]. Chemical Engineering Research and Design, 2022, 179: 535- 548.
[128] 李冠超, 孙功明, 钟丽艳, 等. 高岭土负载钛酸钙复合材料对放射性废水中U(Ⅵ)的吸附性能与机理[J]. 有色金属(冶炼部分), 2022(12): 109-115.
[129] Fuks L, Miśkiewicz A, Zakrzewska-Kołtuniewicz G. Sorption-assisted ultrafiltration hybrid method for treatment of the radioactive aqueous solutions[J]. Chemistry, 2022, 4(3): 1076-1091.
[130] Thakur D A, Sonar N L, Shukla R, et al. Evaluation of cerium-zirconium mixed oxides for separation of 125Sb from radioactive liquid waste[J]. Journal of Radioanalytical and Nuclear Chemistry, 2022, 331(7): 2903-2909.
[131] Hao M J, Chen Z S, Yang H, et al. Pyridinium saltbased covalent organic framework with well-defined nanochannels for efficient and selective capture of aqueous 99TcO 4-[J]. Science Bulletin, 2022, 67(9): 924- 932.
[132] 聂小琴, 董发勤, 刘宁, 等. 酵母菌对锕系核素239Pu的富集行为及减量化研究[J]. 环境科学研究, 2022, 35(8): 1827-1835.
[133] Penzin R A, Milyutin V V, Svittsov A A. Promising technologies for liquid radwaste management in the nuclear industry[J]. Atomic Energy, 2022, 132(1): 24-26.
[134] 张蔚华, 张一民, 郭海峰, 等. 运行核电厂放射性固体废物管理实践与探讨1[J]. 核安全, 2022, 21(1): 19- 25.
[135] 陈权, 毕颖光, 李华辉. 压水堆核电厂放射性固体废物处理与整备技术[J]. 产业与科技论坛, 2022, 21(20): 36-39.
[136] Gonçalves M F S, Petraconi Filho G, Couto A A, et al. Evaluation of thermal plasma process for treatment disposal of solid radioactive waste[J]. Journal of Environmental Management, 2022, 311: 114895.
[137] do Nascimento Linhares V, Goulart de Araujo L, Vicente R, et al. Enhanced removal of radium from radioactive oil sludge using microwave irradiation and non-ionic surfactant[J]. Journal of Petroleum Science and Engineering, 2022, 211: 110168.
[138] 李虹羽, 任力, 廖能斌, 等. 蒸汽重整技术处理放射性废树脂初步经济性探讨[J]. 产业科技创新, 2022(4): 73-75.
[139] 韦琦, 耿海宁, 马浩森, 等. 低碱度水泥基材料固化模拟放射性焚烧灰性能与机理研究[J]. 硅酸盐通报, 2022, 41(1): 182-191.
[140] Touite A, Labied S, Ghailassi T E, et al. Treatment of organic radioactive waste by stabilization/solidification into a cement/Alumina based mortar[J]. Materials Today: Proceedings, 2022, 58: 1485-1489.
[141] Akiyama D, Duhamel C, Kirishima A. Immobilization of radioactive waste by an aluminum silicate matrix formed from fly ash or bentonite[J]. Journal of Nuclear Materials, 2023, 574: 154151.
[142] Fabian M, Tolnai I, Kis Z, et al. Characterization of simulated liquid radioactive waste in a new type of cement mixture[J]. ACS Omega, 2022, 7(41): 36108-36116.
[143] Osawa N, Kubota M, Wu H, et al. Development of N, N, N', N'-tetra-2-ethylhexyl-thiodiglycolamide silicabased adsorbent to separate useful metals from simulated high-level liquid waste[J]. Journal of Chromatography A, 2022, 1678: 463353.
[144] 孙丹丹, 王鑫, 董文曙. 核电厂放射性废液水泥固化体的制备[J]. 核化学与放射化学, 2022, 44(4): 467- 473.
[145] 王亚光, 张劲松, 陈云明, 等. 核设施中放射性含硼废液的固化技术[J]. 工业技术创新, 2022, 9(3): 91-97.
[146] 刘春雨, 周东升, 李丽丽. 模拟不可燃放射性废物等离子体熔融处理试验研究[J]. 核化学与放射化学, 2022, 44(5): 542-548.
[147] Yakunin S A. Cesium in gaseous emissions from the vitrification technology of radioactive waste (review of scientific and technical information)[J]. Radiochemistry, 2022, 64(4): 482-490.
[148] Sonar N L, Sen S, Thakur D A, et al. Treatment feasibility of highly alkaline and highly radioactive liquid waste—a novel approach[J]. Journal of Radioanalytical and Nuclear Chemistry, 2022, 331(2): 739-746.
[149] Inoue H, Watanabe Y, Chung J, et al. Recovery of Se, Zr, Pd, and Cs from simulated high-level radioactive waste glass through phase separation[J]. International Journal of Applied Glass Science, 2022, 13(4): 501-513.
[150] 徐卫东. 浅析高放废液玻璃固化技术[J]. 中国建材科技, 2022, 31(3): 65-69.
[151] Lago D C, Sánchez A D, Prado M O. Immobilization of a simulated high-level waste in an yttrium aluminosilicate glass. Self-heating assessment[J]. Journal of the European Ceramic Society, 2022, 42(16): 7561-7569.
[152] 许强伟, 方升, 刘晨, 等. 模拟高放废物深地质处置条件下Se在铁基材料上的氧化还原行为[J]. 核化学与放射化学, 2022, 44(6): 627-634.
[153] 陆燕, 陈亚君, 单琳. 全球乏燃料与高放废物管理现状[J]. 国外核新闻, 2022(3): 26-28.
[154] Št'ástka J, Hanusová I, Hausmannová L, et al. In-situ testing of Czech bentonite for radioactive waste disposal in Mock-up Josef experiment[J]. Annals of Nuclear Energy, 2022, 172: 109059.
[155] 王驹, 苏锐, 陈亮, 等. 中国高放废物地质处置地下实验室场址筛选[J]. 世界核地质科学, 2022, 39(1): 1- 13.
[156] 王驹. 夯实高放废物处置技术根基保障核燃料循环产业可持续发展[J]. 国防科技工业, 2022(9): 40-42.
Outlines

/