[1] 刘志全, 曾惠忠, 邱慧, 等. 小卫星结构的发展与展望[J]. 宇航学报, 2021, 42(9): 1067-1077.
[2] 詹亚锋, 马正新, 曹志刚. 现代微小卫星技术及发展趋势[J]. 电子学报, 2000, 28(7): 102-106.
[3] 邵兴国, 范含林, 苗建印, 等. 热管技术在航天领域应用和发展前景[C]//第十届全国热管会议论文集. 贵阳: 中国工程热物理学会, 2006: 276-285.
[4] 李德富, 刘小旭, 邓婉, 等. 热管技术在航天器热控制中的应用[J]. 航天器环境工程, 2016, 33(6): 625-633.
[5] Zhang H X, Li G G, Chen L, et al. Development of flatplate loop heat pipes for spacecraft thermal control[J]. Microgravity Science and Technology, 2019, 31(4): 435-443.
[6] Xie D D, Sun Y N, Wang G L, et al. Significant factors affecting heat transfer performance of vapor chamber and strategies to promote it: A critical review[J]. International Journal of Heat and Mass Transfer, 2021, 175(4): 121132.
[7] 李金旺, 戴书刚. 高温热管技术研究进展与展望[J]. 中国空间科学技术, 2019, 39(3): 30-42.
[8] Feldman K T J. Flat plate heat pipe with structural wicks: US3613778A[P]. 1971-10-19.
[9] Nakamura Y, Nishijo K, Murakami N, et al. Small demonstration satellite-4(SDS-4): Development, flight results, and lessons learned in JAXA's microsatellite project[C]// 27th Annual AIAA/USU Conference on small satellites. USA: AIAA, 2013.
[10] Jin L, Wang S H, Guo J C, et al. Performance study of gravity-type heat pipe applied to fuel cell heat dissipation[J]. Energies, 2023, 16(1): 563.
[11] Yu J, Xin Z F, Zhang R H, et al. Effect of spiral woven mesh liquid pumping action on the heat transfer performance of ultrathin vapour chamber[J]. International Journal of Thermal Sciences, 2022, 182: 107799.
[12] Gillot C, Avenas Y, Cezac N, et al. Silicon heat pipes used as thermal spreaders[J]. IEEE Transactions on Components and Packaging Technologies, 2003, 26(2): 332-339.
[13] Lim H T, Kim S H, Im H D, et al. Fabrication and evaluation of a copper flat micro heat pipe working under adverse-gravity orientation[J]. Journal of Micromechanics and Microengineering, 2008, 18(10): 105013.
[14] 刘百麟, 李一帆, 胡帼杰, 等. GEO长寿命卫星热管在轨等温性能分析[J]. 中国空间科学技术, 2020, 40(6): 89-98.
[15] Li Y, Li Z X, Zhou W J, et al. Experimental investigation of vapor chambers with different wick structures at various parameters[J]. Experimental Thermal and Fluid Science, 2016, 77: 132-143.
[16] Tang J C, Hu X G. Evaluation of capillary wetting performance of micro-nano hybrid structures for open microgrooves heat sink[J]. Experimental Thermal and Fluid Science, 2020, 112: 109948.
[17] Zhou W B, Hu X G, He Y, et al. Study on axial wetting length and evaporating heat transfer in rectangular microgrooves with superhydrophilic nano-textured surfaces for two-phase heat transfer devices[J]. Energy Conversion and Management, 2019, 200: 112098.
[18] 李红传, 纪献兵, 徐进良. 仿生毛细芯平板热管性能研究[J]. 航空动力学报, 2017, 32(10): 2403-2409.
[19] Wong S C, Cheng H S, Tu C W. Visualization experiments on the performance of mesh-wick heat pipes with differing wick wettability[J]. International Journal of Heat and Mass Transfer, 2017, 114: 1045-1053.
[20] Wen R F, Li Q, Wu J F, et al. Hydrophobic copper nanowires for enhancing condensation heat transfer[J]. Nano Energy, 2017, 33: 177-183.
[21] 万意, 闫珂, 董顺, 等. 微型平板热管技术研究综述[J]. 电子机械工程, 2015, 31(5): 5-10, 14.
[22] Shukla K N. Heat pipe for aerospace applications—An overview[J]. Journal of Electronics Cooling and Thermal Control, 2015, 5(1): 1-14.
[23] Xin F, Lyu Q, Wang Q W. Three-dimensional numerical analysis of mini-grooved flat heat pipe filled with different working fluids with experimental validation[J]. Heat Transfer Engineering, 2023, 44(4): 317-333.
[24] 桂小红, 宋香娥. 微重力条件下热管吸热器瞬态热分析[J]. 中国空间科学技术, 2015, 35(4): 46-52.
[25] Faghri A, Harley C. Transient lumped heat-pipe analyses[J]. Heat Recovery Systems and CHP, 1994, 14(4): 351-363.
[26] Zuo Z J, Faghri A. A network thermodynamic analysis of the heat pipe[J]. International Journal of Heat and Mass Transfer, 1998, 41(11): 1473-1484.
[27] Fadhl B, Wrobel L C, Jouhara H. Numerical modelling of the temperature distribution in a two-phase closed thermosyphon[J]. Applied Thermal Engineering, 2013, 60(1/2): 122-131.
[28] Fang W Z, Tang Y Q, Yang C, et al. Numerical simulations of the liquid-vapor phase change dynamic processes in a flat micro heat pipe[J]. International Journal of Heat and Mass Transfer, 2020, 147: 119022.
[29] Xiong S L, Du Y P, Wu R. Study of low-level pool boiling in vapor chamber of wickless micro-heat pipe based on Lattice Boltzmann pseudopotential method—Effects of superheat and wall wettability[J]. Journal of Physics: Conference Series, 2023, 2441(1): 012017.
[30] Liu X L, Cheng P, Quan X J. Lattice Boltzmann simulations for self-propelled jumping of droplets after coalescence on a superhydrophobic surface[J]. International Journal of Heat and Mass Transfer, 2014, 73: 195-200.
[31] Jiang H P, Wang X L, Li X R, et al. Enhanced evaporation performance on a novel microstructured surface with vertical dimension gradient[J]. International Journal of Heat and Mass Transfer, 2022, 199: 123478.
[32] Cui Y F, Yu H Y, Wang H J, et al. The numerical modeling of the vapor bubble growth on the silicon substrate inside the flat plate heat pipe[J]. International Journal of Heat and Mass Transfer, 2020, 147: 118945.
[33] 黄晓波. 表面张力驱动对流的实验研究[J]. 力学进展, 1989, 19(3): 353-364.
[34] 万晓琪, 崔晓钰, 谢荣建. 均温板散热技术研究进展[J]. 化工进展, 2022, 41(2): 554-568.
[35] Xin F, Ma T, Wang Q W. Thermal performance analysis of flat heat pipe with graded mini-grooves wick[J]. Applied Energy, 2018, 228: 2129-2139.
[36] Yu J, Li Y, Xin Z F, et al. Experimental investigation on the thermal characteristics of ultrathin vapour chamber with in-plane bending[J]. Applied Thermal Engineering, 2022, 217: 119175.
[37] Jiang L L, Huang Y, Tang Y, et al. Fabrication and thermal performance of porous crack composite wick flattened heat pipe[J]. Applied Thermal Engineering, 2014, 66(1/2): 140-147.
[38] Tang H, Tang Y, Wan Z P, et al. Review of applications and developments of ultra-thin micro heat pipes for electronic cooling[J]. Applied Energy, 2018, 223: 383- 400.
[39] Ivanova M, Lai A, Gillot C, et al. Design, fabrication and test of silicon heat pipes with radial microcapillary grooves[C]//2006 Proceedings. 10th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems. San Diego, USA: IEEE, 2006: 545- 551.
[40] Ma H B, Peterson G P. Experimental investigation of the maximum heat transport in triangular grooves[J]. Journal of Heat Transfer-Transactions of the Asme, 1996, 118(3): 740-746.
[41] Mallik A K, Peterson G P, Weichold M H. Fabrication of vapor-deposited micro heat pipe arrays as an integral part of semiconductor devices[J]. Journal of Microelectromechanical Systems, 1995, 4(3): 119-131.
[42] Hung Y M, Seng Q. Effects of geometric design on thermal performance of star-groove micro-heat pipes[J]. International Journal of Heat and Mass Transfer, 2011, 54(5/6): 1198-1209.
[43] Zhou W J, Li Y, Chen Z S, et al. Ultra-thin flattened heat pipe with a novel band-shape spiral woven mesh wick for cooling smartphones[J]. International Journal of Heat and Mass Transfer, 2020, 146: 118792.
[44] Li C, Peterson G P, Wang Y X. Evaporation/boiling in thin capillary wicks (I)—Wick thickness effects[J]. Journal of Heat Transfer-Transactions of the Asme, 2006, 128(12): 1312-1319.
[45] Tang Y L, Hong S H, Wang S F, et al. Experimental study on thermal performances of ultra-thin flattened heat pipes[J]. International Journal of Heat and Mass Transfer, 2019, 134: 884-894.
[46] Zhou W J, Li Y, Chen Z S, et al. Effect of the passage area ratio of liquid to vapor on an ultra-thin flattened heat pipe[J]. Applied Thermal Engineering, 2019, 162: 114215.
[47] Zhou W J, Li Y, Chen Z S, et al. A novel ultra-thin flattened heat pipe with biporous spiral woven mesh wick for cooling electronic devices[J]. Energy Conversion and Management, 2019, 180: 769-783.
[48] Zhou W J, Li Y, Chen Z S, et al. Experimental study on the heat transfer performance of ultra-thin flattened heat pipe with hybrid spiral woven mesh wick structure [J]. Applied Thermal Engineering, 2020, 170: 115009.
[49] Huang G W, Liu W Y, Luo Y Q, et al. A novel ultrathin vapor chamber for heat dissipation in ultra-thin portable electronic devices[J]. Applied Thermal Engineering, 2020, 167: 114726.
[50] Semenic T, Catton I. Experimental study of biporous wicks for high heat flux applications[J]. International Journal of Heat and Mass Transfer, 2009, 52(21/22): 5113-5121.
[51] Byon C, Kim S J. Capillary performance of bi-porous sintered metal wicks[J]. International Journal of Heat and Mass Transfer, 2012, 55(15/16): 4096-4103.
[52] Chen L, Deng D X, Huang Q S, et al. Development and thermal performance of a vapor chamber with multi-artery reentrant microchannels for high-power LED[J]. Applied Thermal Engineering, 2020, 166: 114686.
[53] Velardo J, Date A, Singh R, et al. Experimental investigation of a vapour chamber heat spreader with hybrid wick structure[J]. International Journal of Thermal Sciences, 2019, 140: 28-35.
[54] Li Y, Zhou W J, Li Z X, et al. Experimental analysis of thin vapor chamber with composite wick structure under different cooling conditions[J]. Applied Thermal Engineering, 2019, 156: 471-484.
[55] Velardo J, Date A, Singh R, et al. On the effective thermal conductivity of the vapour region in vapour chamber heat spreaders[J]. International Journal of Heat and Mass Transfer, 2019, 145: 118797.
[56] Yao F, Miao S S, Zhang M C, et al. An experimental study of an anti-gravity vapor chamber with a treeshaped evaporator[J]. Applied Thermal Engineering, 2018, 141: 1000-1008.
[57] 田智星, 刘余, 王成龙, 等. 高温热管传热传质数值模型 研究 综述 [J]. 核科 学与 工程, 2022, 42(5): 1093- 1113.
[58] Ranjan R, Murthy J Y, Garimella S V, et al. A numerical model for transport in flat heat pipes considering wick microstructure effects[J]. International Journal of Heat and Mass Transfer, 2011, 54(1/2/3): 153-168.
[59] Yan W T, Yang X, Liu T Q, et al. Numerical simulation of heat transfer performance for ultra-thin flat heat pipe [J]. Journal of Thermal Science, 2023, 32(2): 643-649.
[60] 吴应杰, 童彦钧, 赵后剑, 等. 碱金属热管传热特性的数值研究[J]. 核科学与技术, 2022, 10(1): 9-19.
[61] Wang Q H, Zhao H, Xu Z J, et al. Influence of groove parameters on the thermal hydraulic performance of a composite porous vapor chamber: A numerical study[J]. Applied Thermal Engineering, 2020, 172: 115149.
[62] Wang Q H, Wu Z H, Xu Z J, et al. Optimization of the coupling groove parameters of composite porous vapor chamber[J]. Applied Thermal Engineering, 2022, 205: 118007.
[63] Huang Z H, Tang X W, Luo Q L, et al. Numerical analysis on heat transfer characteristics of a multi-vapor channel vapor chamber with novel ultra-thin composite wick[J]. Case Studies in Thermal Engineering, 2021, 26: 101035.
[64] Bodla K K, Murthy J Y, Garimella S V. Evaporation analysis in sintered wick microstructures[J]. International Journal of Heat and Mass Transfer, 2013, 61: 729- 741.
[65] Harimi B, Ghazanfari M H, Masihi M. Analysis of evaporating liquid bridge in horizontal fractures[J]. Journal of Petroleum Science and Engineering, 2021, 202: 108577.
[66] Huang Y H, Chen Q. A numerical model for transient simulation of porous wicked heat pipes by lattice Boltzmann method[J]. International Journal of Heat and Mass Transfer, 2017, 105: 270-278.
[67] Ranjan R, Patel A, Garimella S V, et al. Wicking and thermal characteristics of micropillared structures for use in passive heat spreaders[J]. International Journal of Heat and Mass Transfer, 2012, 55(4): 586-596.
[68] 刘芳, 杨志鹏, 袁卫星, 等. 电子芯片散热技术的研究现状及发展前景[J]. 科学技术与工程, 2018, 18(23): 163-169.
[69] Miljkovic N, Enright R, Nam Y, et al. Jumping-dropletenhanced condensation on scalable superhydrophobic nanostructured surfaces[J]. Nano Letters, 2013, 13(1): 179-187.
[70] Wang D H, Sun Q Q, Hong M J, et al. Design of robust superhydrophobic surfaces[J]. Nature, 2020, 582(7810): 55-59.
[71] Hu Y X, Cheng J, Zhang W, et al. Thermal performance enhancement of grooved heat pipes with inner surface treatment[J]. International Journal of Heat and Mass Transfer, 2013, 67: 416-419.
[72] Xie X Z, Weng Q, Luo Z Q, et al. Thermal performance of the flat micro-heat pipe with the wettability gradient surface by laser fabrication[J]. International Journal of Heat and Mass Transfer, 2018, 125: 658-669.
[73] Lee J S, Lee J S. Critical heat flux enhancement of pool boiling with adaptive fraction control of patterned wettability[J]. International Journal of Heat and Mass Transfer, 2016, 96: 504-512.
[74] Kousalya A S, Singh K P, Fisher T S. Heterogeneous wetting surfaces with graphitic petal-decorated carbon nanotubes for enhanced flow boiling[J]. International Journal of Heat and Mass Transfer, 2015, 87: 380-389.
[75] 张镜洋, 李文通, 张若骥, 等. 脉冲热负荷下相变蓄热对蒸发循环制冷性能的影响[J]. 宇航学报, 2022, 43(3): 383-392.
[76] 张冰强, 吕巍, 张有为, 等. 热开关热管在月面探测光学设备中的应用[J]. 中国空间科学技术, 2017, 37(6): 68-74.
[77] Edalatpour M, Murphy K R, Mukherjee R, et al. Bridging-droplet thermal diodes[J]. Advanced Functional Materials, 2020, 30(43): 2004451.
[78] Traipattanakul B, Tso C Y, Chao C Y H. A phasechange thermal diode using electrostatic-induced coalescing-jumping droplets[J]. International Journal of Heat and Mass Transfer, 2019, 135: 294-304.
[79] Traipattanakul B, Tso C Y, Chao C Y H. Electrostaticinduced coalescing-jumping droplets on nanostructured superhydrophobic surfaces[J]. International Journal of Heat and Mass Transfer, 2019, 128: 550-561.
[80] 陈华伟, 张力文, 郭雨润. 一种单方向导热热管: CN110793367A[P]. 2020-02-14.
[81] 向建化, 段吉安, 周伟, 等. 一种扁平单向传热热管: CN111590281A[P]. 2020-08-28.
[82] 向建化, 魏鑫, 周伟, 等. 一种Y形导流台吸液芯单向传热热管及其加工方法: CN114390869A[P]. 2022-04- 22.
[83] 张力文, 陈华伟, 张超旗, 等. 一种单向导热可控开度的平板热管: CN113008060B[P]. 2022-01-11.
[84] 邵兴国, 向艳超, 苗建印, 等. 热管在嫦娥卫星热控设计中的应用[C]//第十届全国热管会议论文集. 贵阳: 中国工程热物理学会, 2006: 269-275.
[85] 王磊, 菅鲁京. 相变材料在航天器上的应用[J]. 航天器环境工程, 2013, 30(5): 522-528.
[86] 陆江峰, 朱彤, 王海. 带相变蓄热材料热管仿真与试验对比研究[J]. 建模与仿真, 2014, 3(1): 12-16.
[87] 王晓占, 孙敬文, 季琨, 等. 一种空间飞行器用储能控温 散热 器结 构及 其制 造方 法: CN106697335B[P]. 2019-09-17.
[88] 刘顺 , 周日 海, 王琳 , 等. 储能 式均 热板 装置 : CN112325686A[P]. 2021-02-05.
[89] 董丽宁, 雷智博, 阮世庭, 等. 一种卫星用复合式相变平板热管: CN113074570A[P]. 2021-07-06.