Exclusive:Thermal management technology and applications

Application and development of flat heat pipe in spacecraft thermal control

  • LENG Yakun ,
  • ZHANG Xu ,
  • ZHEN Hualong ,
  • LIU Yingchun ,
  • WANG Zhongqi ,
  • PU Liang
Expand
  • 1. School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China;
    2. Innovation Academy for Microsatellites of Chinese Academy of Sciences, Shanghai 201304, China

Received date: 2023-06-14

  Revised date: 2023-12-07

  Online published: 2025-01-15

Abstract

Flat heat pipe, due to its advantages of high heat transfer efficiency, great temperature uniformity, and safety and reliability, has become one of the important options for spacecraft thermal control. Optimization of wick structure is an important method to improve the flow and heat transfer performance of flat heat pipe. For the design of wick structures, the method of designing high performance wick structures was revealed, and guidance was provided for the selection and application of macromeso-micro multiscale numerical model. For wick surface modification, the importance to improve nanostructure mechanical stability, adjust heat transfer mechanism and carry out numerical simulation research was emphasized. To solve the problems of heat dissipation and high radiation in space environment, the development directions of flat heat pipe in spacecraft thermal control were figured out, and the shortcomings of current research were analyzed.

Cite this article

LENG Yakun , ZHANG Xu , ZHEN Hualong , LIU Yingchun , WANG Zhongqi , PU Liang . Application and development of flat heat pipe in spacecraft thermal control[J]. Science & Technology Review, 2024 , 42(24) : 46 -57 . DOI: 10.3981/j.issn.1000-7857.2023.06.00912

References

[1] 刘志全, 曾惠忠, 邱慧, 等. 小卫星结构的发展与展望[J]. 宇航学报, 2021, 42(9): 1067-1077.
[2] 詹亚锋, 马正新, 曹志刚. 现代微小卫星技术及发展趋势[J]. 电子学报, 2000, 28(7): 102-106.
[3] 邵兴国, 范含林, 苗建印, 等. 热管技术在航天领域应用和发展前景[C]//第十届全国热管会议论文集. 贵阳: 中国工程热物理学会, 2006: 276-285.
[4] 李德富, 刘小旭, 邓婉, 等. 热管技术在航天器热控制中的应用[J]. 航天器环境工程, 2016, 33(6): 625-633.
[5] Zhang H X, Li G G, Chen L, et al. Development of flatplate loop heat pipes for spacecraft thermal control[J]. Microgravity Science and Technology, 2019, 31(4): 435-443.
[6] Xie D D, Sun Y N, Wang G L, et al. Significant factors affecting heat transfer performance of vapor chamber and strategies to promote it: A critical review[J]. International Journal of Heat and Mass Transfer, 2021, 175(4): 121132.
[7] 李金旺, 戴书刚. 高温热管技术研究进展与展望[J]. 中国空间科学技术, 2019, 39(3): 30-42.
[8] Feldman K T J. Flat plate heat pipe with structural wicks: US3613778A[P]. 1971-10-19.
[9] Nakamura Y, Nishijo K, Murakami N, et al. Small demonstration satellite-4(SDS-4): Development, flight results, and lessons learned in JAXA's microsatellite project[C]// 27th Annual AIAA/USU Conference on small satellites. USA: AIAA, 2013.
[10] Jin L, Wang S H, Guo J C, et al. Performance study of gravity-type heat pipe applied to fuel cell heat dissipation[J]. Energies, 2023, 16(1): 563.
[11] Yu J, Xin Z F, Zhang R H, et al. Effect of spiral woven mesh liquid pumping action on the heat transfer performance of ultrathin vapour chamber[J]. International Journal of Thermal Sciences, 2022, 182: 107799.
[12] Gillot C, Avenas Y, Cezac N, et al. Silicon heat pipes used as thermal spreaders[J]. IEEE Transactions on Components and Packaging Technologies, 2003, 26(2): 332-339.
[13] Lim H T, Kim S H, Im H D, et al. Fabrication and evaluation of a copper flat micro heat pipe working under adverse-gravity orientation[J]. Journal of Micromechanics and Microengineering, 2008, 18(10): 105013.
[14] 刘百麟, 李一帆, 胡帼杰, 等. GEO长寿命卫星热管在轨等温性能分析[J]. 中国空间科学技术, 2020, 40(6): 89-98.
[15] Li Y, Li Z X, Zhou W J, et al. Experimental investigation of vapor chambers with different wick structures at various parameters[J]. Experimental Thermal and Fluid Science, 2016, 77: 132-143.
[16] Tang J C, Hu X G. Evaluation of capillary wetting performance of micro-nano hybrid structures for open microgrooves heat sink[J]. Experimental Thermal and Fluid Science, 2020, 112: 109948.
[17] Zhou W B, Hu X G, He Y, et al. Study on axial wetting length and evaporating heat transfer in rectangular microgrooves with superhydrophilic nano-textured surfaces for two-phase heat transfer devices[J]. Energy Conversion and Management, 2019, 200: 112098.
[18] 李红传, 纪献兵, 徐进良. 仿生毛细芯平板热管性能研究[J]. 航空动力学报, 2017, 32(10): 2403-2409.
[19] Wong S C, Cheng H S, Tu C W. Visualization experiments on the performance of mesh-wick heat pipes with differing wick wettability[J]. International Journal of Heat and Mass Transfer, 2017, 114: 1045-1053.
[20] Wen R F, Li Q, Wu J F, et al. Hydrophobic copper nanowires for enhancing condensation heat transfer[J]. Nano Energy, 2017, 33: 177-183.
[21] 万意, 闫珂, 董顺, 等. 微型平板热管技术研究综述[J]. 电子机械工程, 2015, 31(5): 5-10, 14.
[22] Shukla K N. Heat pipe for aerospace applications—An overview[J]. Journal of Electronics Cooling and Thermal Control, 2015, 5(1): 1-14.
[23] Xin F, Lyu Q, Wang Q W. Three-dimensional numerical analysis of mini-grooved flat heat pipe filled with different working fluids with experimental validation[J]. Heat Transfer Engineering, 2023, 44(4): 317-333.
[24] 桂小红, 宋香娥. 微重力条件下热管吸热器瞬态热分析[J]. 中国空间科学技术, 2015, 35(4): 46-52.
[25] Faghri A, Harley C. Transient lumped heat-pipe analyses[J]. Heat Recovery Systems and CHP, 1994, 14(4): 351-363.
[26] Zuo Z J, Faghri A. A network thermodynamic analysis of the heat pipe[J]. International Journal of Heat and Mass Transfer, 1998, 41(11): 1473-1484.
[27] Fadhl B, Wrobel L C, Jouhara H. Numerical modelling of the temperature distribution in a two-phase closed thermosyphon[J]. Applied Thermal Engineering, 2013, 60(1/2): 122-131.
[28] Fang W Z, Tang Y Q, Yang C, et al. Numerical simulations of the liquid-vapor phase change dynamic processes in a flat micro heat pipe[J]. International Journal of Heat and Mass Transfer, 2020, 147: 119022.
[29] Xiong S L, Du Y P, Wu R. Study of low-level pool boiling in vapor chamber of wickless micro-heat pipe based on Lattice Boltzmann pseudopotential method—Effects of superheat and wall wettability[J]. Journal of Physics: Conference Series, 2023, 2441(1): 012017.
[30] Liu X L, Cheng P, Quan X J. Lattice Boltzmann simulations for self-propelled jumping of droplets after coalescence on a superhydrophobic surface[J]. International Journal of Heat and Mass Transfer, 2014, 73: 195-200.
[31] Jiang H P, Wang X L, Li X R, et al. Enhanced evaporation performance on a novel microstructured surface with vertical dimension gradient[J]. International Journal of Heat and Mass Transfer, 2022, 199: 123478.
[32] Cui Y F, Yu H Y, Wang H J, et al. The numerical modeling of the vapor bubble growth on the silicon substrate inside the flat plate heat pipe[J]. International Journal of Heat and Mass Transfer, 2020, 147: 118945.
[33] 黄晓波. 表面张力驱动对流的实验研究[J]. 力学进展, 1989, 19(3): 353-364.
[34] 万晓琪, 崔晓钰, 谢荣建. 均温板散热技术研究进展[J]. 化工进展, 2022, 41(2): 554-568.
[35] Xin F, Ma T, Wang Q W. Thermal performance analysis of flat heat pipe with graded mini-grooves wick[J]. Applied Energy, 2018, 228: 2129-2139.
[36] Yu J, Li Y, Xin Z F, et al. Experimental investigation on the thermal characteristics of ultrathin vapour chamber with in-plane bending[J]. Applied Thermal Engineering, 2022, 217: 119175.
[37] Jiang L L, Huang Y, Tang Y, et al. Fabrication and thermal performance of porous crack composite wick flattened heat pipe[J]. Applied Thermal Engineering, 2014, 66(1/2): 140-147.
[38] Tang H, Tang Y, Wan Z P, et al. Review of applications and developments of ultra-thin micro heat pipes for electronic cooling[J]. Applied Energy, 2018, 223: 383- 400.
[39] Ivanova M, Lai A, Gillot C, et al. Design, fabrication and test of silicon heat pipes with radial microcapillary grooves[C]//2006 Proceedings. 10th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems. San Diego, USA: IEEE, 2006: 545- 551.
[40] Ma H B, Peterson G P. Experimental investigation of the maximum heat transport in triangular grooves[J]. Journal of Heat Transfer-Transactions of the Asme, 1996, 118(3): 740-746.
[41] Mallik A K, Peterson G P, Weichold M H. Fabrication of vapor-deposited micro heat pipe arrays as an integral part of semiconductor devices[J]. Journal of Microelectromechanical Systems, 1995, 4(3): 119-131.
[42] Hung Y M, Seng Q. Effects of geometric design on thermal performance of star-groove micro-heat pipes[J]. International Journal of Heat and Mass Transfer, 2011, 54(5/6): 1198-1209.
[43] Zhou W J, Li Y, Chen Z S, et al. Ultra-thin flattened heat pipe with a novel band-shape spiral woven mesh wick for cooling smartphones[J]. International Journal of Heat and Mass Transfer, 2020, 146: 118792.
[44] Li C, Peterson G P, Wang Y X. Evaporation/boiling in thin capillary wicks (I)—Wick thickness effects[J]. Journal of Heat Transfer-Transactions of the Asme, 2006, 128(12): 1312-1319.
[45] Tang Y L, Hong S H, Wang S F, et al. Experimental study on thermal performances of ultra-thin flattened heat pipes[J]. International Journal of Heat and Mass Transfer, 2019, 134: 884-894.
[46] Zhou W J, Li Y, Chen Z S, et al. Effect of the passage area ratio of liquid to vapor on an ultra-thin flattened heat pipe[J]. Applied Thermal Engineering, 2019, 162: 114215.
[47] Zhou W J, Li Y, Chen Z S, et al. A novel ultra-thin flattened heat pipe with biporous spiral woven mesh wick for cooling electronic devices[J]. Energy Conversion and Management, 2019, 180: 769-783.
[48] Zhou W J, Li Y, Chen Z S, et al. Experimental study on the heat transfer performance of ultra-thin flattened heat pipe with hybrid spiral woven mesh wick structure [J]. Applied Thermal Engineering, 2020, 170: 115009.
[49] Huang G W, Liu W Y, Luo Y Q, et al. A novel ultrathin vapor chamber for heat dissipation in ultra-thin portable electronic devices[J]. Applied Thermal Engineering, 2020, 167: 114726.
[50] Semenic T, Catton I. Experimental study of biporous wicks for high heat flux applications[J]. International Journal of Heat and Mass Transfer, 2009, 52(21/22): 5113-5121.
[51] Byon C, Kim S J. Capillary performance of bi-porous sintered metal wicks[J]. International Journal of Heat and Mass Transfer, 2012, 55(15/16): 4096-4103.
[52] Chen L, Deng D X, Huang Q S, et al. Development and thermal performance of a vapor chamber with multi-artery reentrant microchannels for high-power LED[J]. Applied Thermal Engineering, 2020, 166: 114686.
[53] Velardo J, Date A, Singh R, et al. Experimental investigation of a vapour chamber heat spreader with hybrid wick structure[J]. International Journal of Thermal Sciences, 2019, 140: 28-35.
[54] Li Y, Zhou W J, Li Z X, et al. Experimental analysis of thin vapor chamber with composite wick structure under different cooling conditions[J]. Applied Thermal Engineering, 2019, 156: 471-484.
[55] Velardo J, Date A, Singh R, et al. On the effective thermal conductivity of the vapour region in vapour chamber heat spreaders[J]. International Journal of Heat and Mass Transfer, 2019, 145: 118797.
[56] Yao F, Miao S S, Zhang M C, et al. An experimental study of an anti-gravity vapor chamber with a treeshaped evaporator[J]. Applied Thermal Engineering, 2018, 141: 1000-1008.
[57] 田智星, 刘余, 王成龙, 等. 高温热管传热传质数值模型 研究 综述 [J]. 核科 学与 工程, 2022, 42(5): 1093- 1113.
[58] Ranjan R, Murthy J Y, Garimella S V, et al. A numerical model for transport in flat heat pipes considering wick microstructure effects[J]. International Journal of Heat and Mass Transfer, 2011, 54(1/2/3): 153-168.
[59] Yan W T, Yang X, Liu T Q, et al. Numerical simulation of heat transfer performance for ultra-thin flat heat pipe [J]. Journal of Thermal Science, 2023, 32(2): 643-649.
[60] 吴应杰, 童彦钧, 赵后剑, 等. 碱金属热管传热特性的数值研究[J]. 核科学与技术, 2022, 10(1): 9-19.
[61] Wang Q H, Zhao H, Xu Z J, et al. Influence of groove parameters on the thermal hydraulic performance of a composite porous vapor chamber: A numerical study[J]. Applied Thermal Engineering, 2020, 172: 115149.
[62] Wang Q H, Wu Z H, Xu Z J, et al. Optimization of the coupling groove parameters of composite porous vapor chamber[J]. Applied Thermal Engineering, 2022, 205: 118007.
[63] Huang Z H, Tang X W, Luo Q L, et al. Numerical analysis on heat transfer characteristics of a multi-vapor channel vapor chamber with novel ultra-thin composite wick[J]. Case Studies in Thermal Engineering, 2021, 26: 101035.
[64] Bodla K K, Murthy J Y, Garimella S V. Evaporation analysis in sintered wick microstructures[J]. International Journal of Heat and Mass Transfer, 2013, 61: 729- 741.
[65] Harimi B, Ghazanfari M H, Masihi M. Analysis of evaporating liquid bridge in horizontal fractures[J]. Journal of Petroleum Science and Engineering, 2021, 202: 108577.
[66] Huang Y H, Chen Q. A numerical model for transient simulation of porous wicked heat pipes by lattice Boltzmann method[J]. International Journal of Heat and Mass Transfer, 2017, 105: 270-278.
[67] Ranjan R, Patel A, Garimella S V, et al. Wicking and thermal characteristics of micropillared structures for use in passive heat spreaders[J]. International Journal of Heat and Mass Transfer, 2012, 55(4): 586-596.
[68] 刘芳, 杨志鹏, 袁卫星, 等. 电子芯片散热技术的研究现状及发展前景[J]. 科学技术与工程, 2018, 18(23): 163-169.
[69] Miljkovic N, Enright R, Nam Y, et al. Jumping-dropletenhanced condensation on scalable superhydrophobic nanostructured surfaces[J]. Nano Letters, 2013, 13(1): 179-187.
[70] Wang D H, Sun Q Q, Hong M J, et al. Design of robust superhydrophobic surfaces[J]. Nature, 2020, 582(7810): 55-59.
[71] Hu Y X, Cheng J, Zhang W, et al. Thermal performance enhancement of grooved heat pipes with inner surface treatment[J]. International Journal of Heat and Mass Transfer, 2013, 67: 416-419.
[72] Xie X Z, Weng Q, Luo Z Q, et al. Thermal performance of the flat micro-heat pipe with the wettability gradient surface by laser fabrication[J]. International Journal of Heat and Mass Transfer, 2018, 125: 658-669.
[73] Lee J S, Lee J S. Critical heat flux enhancement of pool boiling with adaptive fraction control of patterned wettability[J]. International Journal of Heat and Mass Transfer, 2016, 96: 504-512.
[74] Kousalya A S, Singh K P, Fisher T S. Heterogeneous wetting surfaces with graphitic petal-decorated carbon nanotubes for enhanced flow boiling[J]. International Journal of Heat and Mass Transfer, 2015, 87: 380-389.
[75] 张镜洋, 李文通, 张若骥, 等. 脉冲热负荷下相变蓄热对蒸发循环制冷性能的影响[J]. 宇航学报, 2022, 43(3): 383-392.
[76] 张冰强, 吕巍, 张有为, 等. 热开关热管在月面探测光学设备中的应用[J]. 中国空间科学技术, 2017, 37(6): 68-74.
[77] Edalatpour M, Murphy K R, Mukherjee R, et al. Bridging-droplet thermal diodes[J]. Advanced Functional Materials, 2020, 30(43): 2004451.
[78] Traipattanakul B, Tso C Y, Chao C Y H. A phasechange thermal diode using electrostatic-induced coalescing-jumping droplets[J]. International Journal of Heat and Mass Transfer, 2019, 135: 294-304.
[79] Traipattanakul B, Tso C Y, Chao C Y H. Electrostaticinduced coalescing-jumping droplets on nanostructured superhydrophobic surfaces[J]. International Journal of Heat and Mass Transfer, 2019, 128: 550-561.
[80] 陈华伟, 张力文, 郭雨润. 一种单方向导热热管: CN110793367A[P]. 2020-02-14.
[81] 向建化, 段吉安, 周伟, 等. 一种扁平单向传热热管: CN111590281A[P]. 2020-08-28.
[82] 向建化, 魏鑫, 周伟, 等. 一种Y形导流台吸液芯单向传热热管及其加工方法: CN114390869A[P]. 2022-04- 22.
[83] 张力文, 陈华伟, 张超旗, 等. 一种单向导热可控开度的平板热管: CN113008060B[P]. 2022-01-11.
[84] 邵兴国, 向艳超, 苗建印, 等. 热管在嫦娥卫星热控设计中的应用[C]//第十届全国热管会议论文集. 贵阳: 中国工程热物理学会, 2006: 269-275.
[85] 王磊, 菅鲁京. 相变材料在航天器上的应用[J]. 航天器环境工程, 2013, 30(5): 522-528.
[86] 陆江峰, 朱彤, 王海. 带相变蓄热材料热管仿真与试验对比研究[J]. 建模与仿真, 2014, 3(1): 12-16.
[87] 王晓占, 孙敬文, 季琨, 等. 一种空间飞行器用储能控温 散热 器结 构及 其制 造方 法: CN106697335B[P]. 2019-09-17.
[88] 刘顺 , 周日 海, 王琳 , 等. 储能 式均 热板 装置 : CN112325686A[P]. 2021-02-05.
[89] 董丽宁, 雷智博, 阮世庭, 等. 一种卫星用复合式相变平板热管: CN113074570A[P]. 2021-07-06.
Outlines

/