In this article, the magnetic power loss of NdFeB magnetic material was calculated by combining experiment and simulation. The results showed that the magnetic power loss of NdFeB thermoseed in the magnetic field with frequency of 21~29 kHz and magnetic induction intensity of 2.7~3.7 mT was higher, and the thermal volumetric power density was in the range of 2.39×106 W/m3~5.54×106 W/m3 under the given magnetic field condition. The results were applied to the simulation of magnetic induction hyperthermia. The simulation results showed that the effective hyperthermia boundary of a single NdFeb thermoseed was ellipsoidal, with the short half-axis of 12.9 mm of and the long half-axis of 17.6 mm for the maximum effective hyperthermia range under the given magnetic field condition, indicating that NdFeB thermoseed could reach the heat generation power required for hyperthermia under low magnetic field frequency and magnetic induction intensity, which provided data support for the application of NdFeB material in magnetic hyperthermia.
LI Jing
,
SHI Baiyuan
,
LIN Zixin
,
XU Suhua
. Magnetic power loss of NdFeB thermoseeds in alternating magnetic field for magnetic induction hyperthermia[J]. Science & Technology Review, 2024
, 42(24)
: 79
-87
.
DOI: 10.3981/j.issn.1000-7857.2023.07.01151
[1] 林海超. 肿瘤热疗机制及临床应用研究进展[J]. 临床医药文献电子杂志, 2018, 5(16): 197-198.
[2] Dewhirst M W, Viglianti B L, Lora-Michiels M, et al. Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia[J]. International Journal of Hyperthermia, 2003, 19(3): 267-294.
[3] Elming P B, Sørensen B S, Oei A L, et al. Hyperthermia: The optimal treatment to overcome radiation resistant hypoxia[J]. Cancers, 2019, 11(1): 60.
[4] Liu T, Ye Y W, Zhu A L, et al. Hyperthermia combined with 5-fluorouracil promoted apoptosis and enhanced thermotolerance in human gastric cancer cell line SGC- 7901[J]. OncoTargets and Therapy, 2015, 8: 1265-1270.
[5] Hergt R, Dutz S. Magnetic particle hyperthermia—Biophysical limitations of a visionary tumour therapy[J]. Journal of Magnetism and Magnetic Materials, 2007, 311(1): 187-192.
[6] Chen J J, Liu J X, Hu Y P, et al. Metal-organic framework-coated magnetite nanoparticles for synergistic magnetic hyperthermia and chemotherapy with pH-triggered drug release[J]. Science and Technology of Advanced Materials, 2019, 20(1): 1043-1054.
[7] Spirou S V, Basini M, Lascialfari A, et al. Magnetic hyperthermia and radiation therapy: Radiobiological principles and current practice[J]. Nanomaterials, 2018, 8(6): 401.
[8] Yu X G, Ding S W, Yang R P, et al. Research progress on magnetic nanoparticles for magnetic induction hyperthermia of malignant tumor[J]. Ceramics International, 2021, 47(5): 5909-5917.
[9] Deger S, Boehmer D, Türk I, et al. Interstitial hyperthermia using self-regulating thermoseeds combined with conformal radiation therapy[J]. European Urology, 2002, 42(2): 147-153.
[10] Miyagawa T, Saito H, Minamiya Y, et al. Inhibition of Hsp90 and 70 sensitizes melanoma cells to hyperthermia using ferromagnetic particles with a low Curie temperature[J]. International Journal of Clinical Oncology, 2013, 19(4): 722-730.
[11] Lemine O M, Madkhali N, Alshammari M, et al. Maghemite (γ -Fe2O3) and γ -Fe2O3-TiO2 nanoparticles for magnetic hyperthermia applications: Synthesis, characterization and heating efficiency[J]. Materials, 2021, 14(19): 5691.
[12] 王旭飞, 王晓文, 赵凌云, 等. 磁感应治疗研究和临床试验[J]. 科技导报, 2010, 28(16): 97-105.
[13] Haider S A, Cetas T C, Wait J R, et al. Power absorption in ferromagnetic implants from radiofrequency magnetic fields and the problem of optimization[J]. IEEE Transactions on Microwave Theory and Techniques, 1991, 39(11): 1817-1827.
[14] Wang H, Wu J N, Zhuo Z H, et al. A three-dimensional model and numerical simulation regarding thermoseed mediated magnetic induction therapy conformal hyperthermia[J]. Technology and Health Care, 2016, 24(Suppl 2): S827-S839.
[15] 武建安. 磁感应热疗微米级铁磁介质的磁热效应机理与应用研究[D]. 北京: 清华大学, 2017.
[16] Gangwar A, Varghese S S, Meena S S, et al. Physical and in vitro evaluation of ultra-fine cohenite particles for the prospective magnetic hyperthermia application [J]. Journal of Materials Science: Materials in Electronics, 2020, 31(13): 10772-10782.
[17] Yu X G, Ding S W, Yang R P, et al. Research progress on magnetic nanoparticles for magnetic induction hyperthermia of malignant tumor[J]. Ceramics International, 2021, 47(5): 5909-5917.
[18] 李亚峰. 磁性材料行业现状与发展前景分析[J]. 新材料产业, 2018(7): 51-54.
[19] 孙艳荣, 张志鹏, 李赛松, 等. 钕铁硼磁性材料发展现状及性能研究[J]. 当代化工研究, 2021(21): 117-119.
[20] Nakamura H. The current and future status of rare earth permanent magnets[J]. Scripta Materialia, 2018, 154: 273-276.
[21] Ghosh R, Pradhan L, Devi Y P, et al. Induction heating studies of Fe3O4 magnetic nanoparticles capped with oleic acid and polyethylene glycol for hyperthermia[J]. Journal of Materials Chemistry, 2011, 21(35): 13388-13398.
[22] Rytov R A, Bautin V A, Usov N A. Towards optimal thermal distribution in magnetic hyperthermia[J]. Scientific Reports, 2022, 12(1): 3023.
[23] Pennes H H. Analysis of tissue and arterial blood temperatures in the resting human forearm[J]. Journal of Applied Physiology, 1948, 1(2): 93-122.
[24] Tang Y D, Wang Y S, Flesch R C C, et al. Effect of porous heat transfer model on different equivalent thermal dose methods considering an experiment-based nanoparticle distribution during magnetic hyperthermia[J]. Journal of Physics D: Applied Physics, 2023, 56(14): 145402.
[25] 李永建, 栗浩森, 耿惠, 等. 钕铁硼永磁材料在过热失磁条件下的磁滞损耗测试与分析[J]. 中国电力, 2020, 53(10): 50-57.
[26] 赵志刚, 魏乐, 郭莹, 等. 基于修正Bertotti模型的变压器铁心谐波磁损耗计算与验证[J]. 天津大学学报(自然科学与工程技术版), 2019, 52(12): 1270-1277.
[27] van Rhoon G C. Is CEM43 still a relevant thermal dose parameter for hyperthermia treatment monitoring?[J]. International Journal of Hyperthermia, 2016, 32(1): 50-62.