Special to S & T Review

Analysis of the "ISRU Gap Assessment Report" by the International Space Exploration Coordination Group

  • Cheng ZHOU , 1, 2 ,
  • Shanshan CHENG 1, 2 ,
  • Yuyue GAO 1, 2 ,
  • Yan ZHOU 1, 2
Expand
  • 1. National Center of Technology Innovation for Digital Construction, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2. School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

Received date: 2023-12-18

  Online published: 2025-02-19

Copyright

All rights reserved. Unauthorized reproduction is prohibited.

Cite this article

Cheng ZHOU , Shanshan CHENG , Yuyue GAO , Yan ZHOU . Analysis of the "ISRU Gap Assessment Report" by the International Space Exploration Coordination Group[J]. Science & Technology Review, 2025 , 43(2) : 22 -33 . DOI: 10.3981/j.issn.1000-7857.2023.12.01890

1
Sanders G B , Larson W E . Final review of analog field campaigns for in situ resource utilization technology and capability maturation[J]. Advances in Space Research, 2015, 55 (10): 2381- 2404.

DOI

2
Kornuta D , Abbud-Madrid A , Atkinson J , et al. Commercial lunar propellant architecture: A collaborative study of lunar propellant production[J]. Reach, 2019, 13: 100026.

DOI

3
Fu Y M , Li L Y , Xie B Z , et al. How to establish a bioregenerative life support system for long-term crewed missions to the moon or Mars[J]. Astrobiology, 2016, 16 (12): 925- 936.

DOI

4
Lavoie T, Spudis P D. The purpose of human spaceflight and a lunar architecture to explore the potential of resource utilization[C] //AIAA Space Forum 2016, California, USA: SPACE 2016 Conference & Exposition, 2016: 5526.

5
Hecht M , Hoffman J , Rapp D , et al. Mars oxygen ISRU experiment (MOXIE)[J]. Space Science Reviews, 2021, 217 (1): 9.

DOI

6
Crawford I A . Lunar resources: A review[J]. Progress in Physical Geography: Earth and Environment, 2015, 39 (2): 137- 167.

DOI

7
In-Situ Resource Utilisation Gap Assessment Report[R]. Quebec: The International Space Exploration Coordination Group, 2021.

8
王赤, 时蓬, 白青江, 等. 2022年空间科学与深空探测热点回眸[J]. 科技导报, 2023, 41 (1): 79- 102.

DOI

9
Global exploration roadmap: Lunar surface exploration scenario update[R]. ISECG, 2020.

10
Zhou C , Chen R , Xu J , et al. In-situ construction method for lunar habitation: Chinese Super Mason[J]. Automation in Construction, 2019, 104: 66- 79.

DOI

11
Jayathilake B A C S , Ilankoon I M S K , Dushyantha M N P . Assessment of significant geotechnical parameters for lunar regolith excavations[J]. Acta Astronautica, 2022, 196: 107- 122.

DOI

12
Starr S O , Muscatello A C . Mars in situ resource utilization: A review[J]. Planetary and Space Science, 2020, 182: 104824.

DOI

13
Oh K , Chen T , Kou R , et al. Ultralow-binder-content thermoplastic composites based on lunar soil simulant[J]. Advances in Space Research, 2020, 66 (9): 2245- 2250.

DOI

14
Zhang P , Dai W , Niu R , et al. Overview of the lunar in situ resource utilization techniques for future lunar missions[J]. Space: Science & Technology, 2023, 3: 37.

15
田小永, 李涤尘, 卢秉恒. 空间3D打印技术现状与前景[J]. 载人航天, 2016, 22 (4): 471- 476.

DOI

Outlines

/