Exclusive: New Display Science and Technology

Research progress of light field display and development suggestions

  • Yuyan PENG , 1 ,
  • Jiaxin KANG 1 ,
  • Xiongtu ZHOU , 1, 2, * ,
  • Yongai ZHANG 1, 2 ,
  • Tailiang GUO 1, 2 ,
  • Chaoxing WU 1, 2
Expand
  • 1. College of Physics and Information Engineering of Fuzhou University, Fuzhou 350108, China
  • 2. Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China

Received date: 2024-03-12

  Online published: 2025-02-19

Copyright

All rights reserved. Unauthorized reproduction is prohibited.

Cite this article

Yuyan PENG , Jiaxin KANG , Xiongtu ZHOU , Yongai ZHANG , Tailiang GUO , Chaoxing WU . Research progress of light field display and development suggestions[J]. Science & Technology Review, 2025 , 43(2) : 34 -41 . DOI: 10.3981/j.issn.1000-7857.2024.03.01109

1
Kim G , Kim Y , Yun J , et al. Metasurface-driven full-space structured light for three-dimensional imaging[J]. Nature Communications, 2022, 13 (1): 5920.

DOI

2
Sun Q L , Wang C L , Fu Q , et al. End-to-end complex lens design with differentiate ray tracing[J]. ACM Transactions on Graphics, 2021, 40 (4): 1- 13.

3
王琼华. 3D显示技术与器件[M]. 北京: 科学出版社, 2011.

4
康家欣, 王文雯, 彭玉颜, 等. 光场显示技术的研究现状与发展趋势[J]. 光电子技术, 2023, 43 (2): 116- 128.

5
Liu Z S , Li D H , Deng H . Wide-viewing-angle integral imaging system with full-effective-pixels elemental image array[J]. Micromachines, 2023, 14 (1): 225.

DOI

6
Downing E , Hesselink L , Ralston J , et al. A three-color, solid-state, three-dimensional display[J]. Science, 1996, 273 (5279): 1185- 1189.

DOI

7
Hsu C H , Wu Y L , Cheng W H , et al. HoloTube: A lowcost portable 360-degree interactive autostereoscopic display[J]. Multimedia Tools and Applications, 2017, 76 (7): 9099- 9132.

DOI

8
Xie X H , Yu X B , Fu B S , et al. High-quality reproduction method for three-dimensional light-field displays using parallax-view information synthesis and aberration precorrection[J]. Optics and Lasers in Engineering, 2024, 173: 107930.

DOI

9
Gershun A . The light field[J]. Journal of Mathematics and Physics, 1939, 18 (1-4): 51- 151.

DOI

10
Levoy M, Hanrahan P. Light field rendering[C] //Computer Graphics and Interactive Ttechniques. New York, USA: Association for Computing Machinery, 1996: 43-54.

11
Gortler J S, Grzeszczuk R, Szeliski R, et al. The lumigraph[C] //Computer Graphics and Interactive Techniques. New York, USA: Association for Computing Machinery, 1996: 31-42.

12
Lippmann G . Épreuves réversibles donnant la sensation du relief[J]. Journal de Physique Théorique et Appliquée, 1908, 7 (1): 821- 825.

DOI

13
彭玉颜. 用于集成成像3D显示的微透镜阵列研制[D]. 福州: 福州大学, 2017.

14
Chao C H , Liu C L , Chen H H . Time-division multiplexing light field display with learned coded aperture[J]. IEEE Transactions on Image Processing, 2023, 32: 350- 363.

DOI

15
Ma H W , Yao J H , Gao Y Q , et al. Parameter optimization method for light field 3D display[J]. Optics Express, 2023, 31 (25): 42206- 42217.

DOI

16
Xing Y , Lin X Y , Zhang L B , et al. Integral imagingbased tabletop light field 3D display with large viewing angle[J]. Opto-Electronic Advances, 2023, 6 (6): 220178.

DOI

17
Wang H , Deng H , Guo Z D , et al. Curved computer-generated integral imaging based on backward ray-tracing technique[J]. IEEE Photonics Journal, 2023, 15 (1): 1- 6.

18
Jiang L J , Lin J F , Rao F B , et al. Dual-mode optical seethrough integral imaging 3D display with large depth of field[J]. Optics and Lasers in Engineering, 2024, 175: 107986.

DOI

19
Bae S I , Kim K , Jang K W , et al. High contrast ultrathin light-field camera using inverted microlens arrays with metal-insulator-metal optical absorber[J]. Advanced Optical Materials, 2021, 9 (6): 2001657.

DOI

20
Wen J , Yan X P , Jiang X Y , et al. Comparative study on light modulation characteristic between hexagonal and rectangular arranged macro lens array for integral imaging based light field display[J]. Optics Communications, 2020, 466: 125613.

DOI

21
Yang L , Shen J Q . Deep neural network-enabled resolution enhancement for the digital light field display based on holographic functional screen[J]. Optics Communications, 2024, 550: 130012.

DOI

22
Yan X P , Yan Z , Jing T , et al. Enhancement of effective viewable information in integral imaging display systems with holographic diffuser: Quantitative characterization, analysis, and validation[J]. Optics and Laser Technology, 2023, 161: 109101.

DOI

23
Yan Z , Yan X P , Jiang X Y , et al. Calibration of the lens' axial position error for microlens array based integral imaging display system[J]. Optics and Lasers in Engineering, 2021, 142: 106585.

DOI

24
Cai Z W , Chen J W , Pedrini G , et al. Lensless light-field imaging through diffuser encoding[J]. Light, Science & Applications, 2020, 9: 143.

25
Wang W W , Chen G X , Weng Y L , et al. Large-scale microlens arrays on flexible substrate with improved numerical aperture for curved integral imaging 3D display[J]. Scientific Reports, 2020, 10 (1): 11741.

DOI

26
Wang W W , Zhang Y A , Wu C X , et al. Enhanced depth of field of integral imaging display using bifocal microlens array fabricated by two-step lithography[J]. Journal of the Society for Information Display, 2023, 31 (7): 494- 503.

DOI

27
Li Q , Zhong F Y , Deng H , et al. Depth-enhanced 2D/3D switchable integral imaging display by using n-layer focusing control units[J]. Liquid Crystals, 2022, 49 (10): 1367- 1375.

DOI

28
Zhang Y A , Weng X Y , Liu P H , et al. Electrically highresistance liquid crystal micro-lens arrays with high performances for integral imaging 3D display[J]. Optics Communications, 2020, 462: 125299.

DOI

29
Wang W W , Chen W D , Peng Y Y , et al. Low-voltage driving high-resistance liquid crystal micro-lens with electrically tunable depth of field for the light field imaging system[J]. Scientific Reports, 2022, 12 (1): 17442.

DOI

30
Zhou R Y , Wei C X , Ma H W , et al. Depth of field expansion method for integral imaging based on diffractive optical element and CNN[J]. Optics Express, 2023, 31 (23): 38146- 38164.

DOI

31
Yang L , Sang X Z , Yu X B , et al. Demonstration of an improved integral imaging system with large viewing angle using the micro-lens array mask[J]. Optik, 2019, 182: 1113- 1119.

DOI

32
Gao X , Sang X Z , Xing S J , et al. Full-parallax 3D light field display with uniform view density along the horizontal and vertical direction[J]. Optics Communications, 2020, 467: 125765.

DOI

33
Yan Z , Yan X P , Huang Y Q , et al. Characteristics of the holographic diffuser in integral imaging display systems: A quantitative beam analysis approach[J]. Optics and Lasers in Engineering, 2021, 139: 106484.

DOI

34
Lv Z L , Li J N , Yang Y , et al. 3D head-up display with a multiple extended depth of field based on integral imaging and holographic optical elements[J]. Optics Express, 2023, 31 (2): 964- 975.

DOI

35
Balogh T, Kovacs P T, Barsi A. Holovizio 3D display system[C] //Proceedings of 3DTV Conference. Piscataway, NJ: IEEE, 2007: 1-4.

36
Watanabe H , Okaichi N , Omura T , et al. Aktina Vision: Full-parallax three-dimensional display with 100 million light rays[J]. Scientific Reports, 2019, 9 (1): 17688.

DOI

37
Yamauchi M , Yendo T . Light field display using wavelength division multiplexing[J]. ITE Transactions on Media Technology and Applications, 2023, 11 (2): 49- 55.

DOI

38
Zhang H L , Deng H , Ren H , et al. See-through 2D/3D compatible integral imaging display system using lens-array holographic optical element and polymer dispersed liquid crystal[J]. Optics Communications, 2020, 456: 124615.

DOI

39
Doronin O, Bregovic R, Gotchev A. Optimized 3D scene rendering on projection-based 3D displays[C] //Proceedings of 28th European Signal Processing Conference (EUSIPCO). Piscataway, NJ: IEEE, 2021: 580-584.

40
Wang P , Sang X Z , Chen D , et al. Computational superresolution full-parallax three-dimensional light field display based on dual-layer LCD modulation[J]. IEEE Access, 2020, 8: 81045- 81054.

DOI

41
Zhu L M , Du G , Lv G Q , et al. Performance improvement for compressive light field display with multi-plane projection[J]. Optics and Lasers in Engineering, 2021, 142: 106609.

DOI

42
Zhu L M , Chen Q Y , Chen T , et al. High-brightness hybrid compressive light field display with improved image quality[J]. Optics Letters, 2023, 48 (23): 6172- 6175.

DOI

43
Li Y, Qiao W. Vector light field 3D display with multi-directional backlight[C] //Proceedings of International Conference on Precision Instruments and Optical Engineering (PIOE 2022). Guangzhou: SPIE, 2023: 120-125.

44
Zhou F B , Zhou F , Chen Y , et al. Vector light field display based on an intertwined flat lens with large depth of focus[J]. Optica, 2022, 9 (3): 288.

DOI

45
Shi J C , Hua J Y , Zhou F B , et al. Augmented reality vector light field display with large viewing distance based on pixelated multilevel blazed gratings[J]. Photonics, 2021, 8 (8): 337.

DOI

46
Hua J Y , Li Y , Ge P R , et al. Time-multiplexed vector light field display with intertwined views via metagrating matrix[J]. Optics and Lasers in Engineering, 2023, 164: 107527.

47
欧阳钟灿. 中国新型显示技术发展之路[J]. 科技导报, 2023, 41 (19): 92- 95.

DOI

Outlines

/