Papers

A parallel Transformer-CNN network for image compression sensing reconstruction

  • Xinyan ZHANG , 1 ,
  • Yongjun ZHU , 1, 2, 3, * ,
  • Hongjie WU 1 ,
  • Fanli ZHOU 3
Expand
  • 1. School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
  • 2. College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
  • 3. Suzhou Tongyuan Software & Control Technology Company, Suzhou 215123, China

Received date: 2023-12-03

  Online published: 2025-02-19

Copyright

All rights reserved. Unauthorized reproduction is prohibited.

Cite this article

Xinyan ZHANG , Yongjun ZHU , Hongjie WU , Fanli ZHOU . A parallel Transformer-CNN network for image compression sensing reconstruction[J]. Science & Technology Review, 2025 , 43(2) : 108 -116 . DOI: 10.3981/j.issn.1000-7857.2023.12.01823

1
Donoho D L . Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52 (4): 1289- 1306.

DOI

2
张华, 曹良才, 金国藩, 等. 压缩成像技术的应用与挑战[J]. 科技导报, 2018, 36 (10): 20- 29.

DOI

3
Duarte M F , Davenport M A , Takhar D , et al. Single-pixel imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25 (2): 83- 91.

DOI

4
Zhu L , Wu X , Sun Z Y , et al. Compressed-sensing accelerated 3-dimensional magnetic resonance cholangiopancreatography: Application in suspected pancreatic diseases[J]. Investigative Radiology, 2018, 53 (3): 150- 157.

DOI

5
Yuan X , Brady D J , Katsaggelos A K . Snapshot compressive imaging: Theory, algorithms, and applications[J]. IEEE Signal Processing Magazine, 2021, 38 (2): 65- 88.

DOI

6
Zhang J , Zhao D B , Gao W . Group-based sparse representation for image restoration[J]. IEEE Transactions on Image Processing, 2014, 23 (8): 3336- 3351.

DOI

7
Dong W S , Shi G M , Li X , et al. Compressive sensing via nonlocal low-rank regularization[J]. IEEE Transactions on Image Processing, 2014, 23 (8): 3618- 3632.

DOI

8
山世光, 阚美娜, 刘昕, 等. 深度学习: 多层神经网络的复兴与变革[J]. 科技导报, 2016, 34 (14): 60- 70.

DOI

9
Shi W Z , Jiang F , Liu S H , et al. Image compressed sensing using convolutional neural network[J]. IEEE Transactions on Image Processing, 2019, 29: 375- 388.

10
Zhang Z , Liu Y , Liu J , et al. AMP-Net: Denoising-based deep unfolding for compressive image sensing[J]. IEEE Transactions on Image Processing, 2020, 30: 1487- 1500.

11
Zhang J, Ghanem B. ISTA-net: Interpretable optimization-inspired deep network for image compressive sensing[C]// Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2018: 1828-1837.

12
Kabkab M , Samangouei P , Chellappa R . Task-aware compressed sensing with generative adversarial networks[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32 (1): 1- 8.

13
Chen J W, Sun Y B, Liu Q S, et al. Learning memory augmented cascading network for compressed sensing of images[M]//Lecture Notes in Computer Science. Cham: Springer International Publishing, 2020: 513-529.

14
Sun Y B , Yang Y , Liu Q S , et al. Learning non-locally regularized compressed sensing network with half-quadratic splitting[J]. IEEE Transactions on Multimedia, 2020, 22 (12): 3236- 3248.

DOI

15
Sun Y B , Chen J W , Liu Q S , et al. Dual-path attention network for compressed sensing image reconstruction[J]. IEEE Transactions on Image Processing, 2020, 29: 9482- 9495.

DOI

16
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010.

17
Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16×16 words: Transformers for image recognition at scale[J]. arXiv preprint arXiv: 2010.11929, 2020.

18
Wang Z D, Cun X D, Bao J M, et al. Uformer: A general U-shaped transformer for image restoration[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ: IEEE, 2022: 17683-17693.

19
Jiang Y , Chang S , Wang Z . Transgan: Two pure transformers can make one strong gan, and that can scale up[J]. Advances in Neural Information Processing Systems, 2021, 34: 14745- 14758.

20
Shen M H , Gan H P , Ning C , et al. TransCS: A transformer-based hybrid architecture for image compressed sensing[J]. IEEE Transactions on Image Processing, 2022, 31: 6991- 7005.

DOI

21
Gan L. Block compressed sensing of natural images[C]//Proceedings of 15th International Conference on Digital Signal Processing. Piscataway, NJ: IEEE, 2007: 403-406.

22
Arbeláez P , Maire M , Fowlkes C , et al. Contour detection and hierarchical image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33 (5): 898- 916.

DOI

23
Kulkarni K, Lohit S, Turaga P, et al. ReconNet: Non-iterative reconstruction of images from compressively sensed measurements[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ: IEEE, 2016: 449-458.

24
Dong W S , Wang P Y , Yin W T , et al. Denoising prior driven deep neural network for image restoration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41 (10): 2305- 2318.

DOI

25
Chen W J, Yang C L, Yang X. FSOINET: Feature-space optimization-inspired network for image compressive sensing[C]//Proceedings of ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Piscataway, NJ: IEEE, 2022: 2460-2464.

26
Chen B , Zhang J . Content-aware scalable deep compressed sensing[J]. IEEE Transactions on Image Processing, 2022, 31: 5412- 5426.

Outlines

/