Emotional intelligence of large language models and its psychological applications
Received date: 2023-09-05
Online published: 2025-03-07
Copyright
Haiyan WU , Cuilin HE , Youzhi QU , Quanying LIU . Emotional intelligence of large language models and its psychological applications[J]. Science & Technology Review, 2025 , 43(3) : 47 -58 . DOI: 10.3981/j.issn.1000-7857.2023.09.01352
1 |
|
2 |
|
3 |
|
4 |
|
5 |
|
6 |
|
7 |
|
8 |
Schutte N S, Malouff J M, Bhullar N. The assessing emotions scale[M]//Assessing Emotional Intelligence. Boston, MA: Springer, 2009: 119-134.
|
9 |
|
10 |
|
11 |
|
12 |
|
13 |
Agarwal A, Xie B, Vovsha I, et al. Sentiment analysis of twitter data[C]//Proceedings of the Workshop on Language in Social Media. Stroudsburg, PA, USA: Association for Computational Linguistics, 2011: 30-38.
|
14 |
|
15 |
|
16 |
|
17 |
|
18 |
Cahyawijaya S, Chen D L, Bang Y J, et al. High-dimension human value representation in large language models[EB/OL]. [2024-03-05]. https://arxiv.org/abs/2404.07900v3.
|
19 |
Serapio-García G, Safdari M, Crepy C, et al. Personality traits in large language models[EB/OL]. [2024-03-05]. https://arxiv.org/abs/2307.00184v3.
|
20 |
Xie Q Z, Dai Z H, Hovy E, et al. Unsupervised data augmentation for consistency training[C]//Proceedings of Advances in Neural Information Processing Systems. New York: Curran Associates, 2020: 6256-6268.
|
21 |
Zhang X, Zhao J B, LeCun Y. Character-level convolutional networks for text classification[C]//Proceedings of Advances in Neural Information Processing Systems. New York: Curran Associates, 2015: 649-657.
|
22 |
Shahraki A G, Zaiane O R. Lexical and learning-based emotion mining from text[C]//Proceedings of the International Conference on Computational Linguistics and Intelligent Text Processing. Switzerland: Springer, 2017: 24-55.
|
23 |
|
24 |
Socher R, Perelygin A, Wu J Y, et al. Recursive deep models for semantic compositionality over a sentiment treebank [C]//Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA: Association for Computational Linguistics, 2013: 1631-1642.
|
25 |
Li M, Long Y, Qin L, et al. Emotion corpus construction based on selection from hashtags[C]//Proceedings of the Tenth International Conference on Language Resources and Evaluation. Portorož, Slovenia: European Language Resources Association, 2016: 1845-1849.
|
26 |
姚源林, 王树伟, 徐睿峰, 等. 面向微博文本的情绪标注语料库构建[J]. 中文信息学报, 2014, 28 (5): 83- 91.
|
27 |
Huang Y X, Jusoh S. Sentiment detection through emotion classification using deep learning approach for Chinese text [C]//Proceedings of 15th International Conference on Electronics, Computers and Artificial Intelligence (ECAI). Piscataway, NJ: IEEE, 2023: 1-6.
|
28 |
Xing F. Designing heterogeneous LLM agents for financial sentiment analysis[EB/OL]. [2024-03-05]. https://arxiv.org/abs/2401.05799v1.
|
29 |
Sun X F, Li X Y, Zhang S Y, et al. Sentiment analysis through LLM negotiations[EB/OL]. [2024-04-06]. https://arxiv.org/abs/2311.01876v1.
|
30 |
Kang I, Ruan S K, Ho T, et al. LLM-augmented preference learning from natural language[EB/OL]. [2024-05-05]. https://arxiv.org/abs/2310.08523v1.
|
31 |
|
32 |
|
33 |
Liu Z W, Yang K L, Xie Q Q, et al. EmoLLMs: A series of emotional large language models and annotation tools for comprehensive affective analysis[C]//Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2024: 5487-5496.
|
34 |
Ouyang L, Wu J, Xu J, et al. Training language models to follow instructions with human feedback[C]//Proceedings of Advances in Neural Information Processing Systems. New York: Curran Associates, 2022: 27730-27744.
|
35 |
|
36 |
|
37 |
|
38 |
|
39 |
|
40 |
|
41 |
|
42 |
Xi Z H, Chen W X, Guo X, et al. The rise and potential of large language model based agents: A survey[EB/OL]. [2024-05-05]. https://arxiv.org/abs/2309.07864v3.
|
43 |
|
44 |
|
45 |
|
46 |
Xu Y, Chen H, Yu J, et al. Secap: Speech emotion captioning with large language model[C]//Proceedings of the AAAI Conference on Artificial Intelligence. California, USA: Association for the Advancement of Artificial Intelligence, 2024: 19323-19331.
|
47 |
Li M, Su Y S, Huang H Y, et al. Language-specific representation of emotion-concept knowledge causally supports emotion inference[EB/OL]. [2024-05-05]. https://arxiv.org/abs/2302.09582v5.
|
48 |
Huang J T, Lam M H, Li E J, et al. Emotionally numb or empathetic? evaluating how LLMs feel using EmotionBench [EB/OL]. [2024-06-10]. https://arxiv.org/abs/2308.03656v6.
|
49 |
Liu J L, Liu C, Zhou P L, et al. Is ChatGPT a good recommender? A preliminary study[EB/OL]. [2024-06-10]. https://arxiv.org/abs/2304.10149v3.
|
50 |
Lian Z, Sun H Y, Sun L C, et al. Explainable multimodal emotion recognition[EB/OL]. [2024-06-10]. https://arxiv.org/abs/2306.15401v6.
|
51 |
Li C, Wang J, Zhu K J, et al. Large language models understand and can be enhanced by emotional stimuli[EB/OL]. [2023-08-01]. https://arxiv.org/abs/2307.11760v7
|
52 |
|
53 |
|
54 |
Qiu H C, He H L, Zhang S, et al. SMILE: Single-turn to multi-turn inclusive language expansion via ChatGPT for mental health support[EB/OL]. [2024-06-10]. https://arxiv.org/abs/2305.00450v3.
|
55 |
Krügel S, Ostermaier A, Uhl M. The moral authority of ChatGPT[EB/OL]. [2024-09-10]. https://arxiv.org/abs/2301.07098v1.
|
56 |
Kotek H, Dockum R, Sun D. Gender bias and stereotypes in large language models[C]//Proceedings of The ACM Collective Intelligence Conference. New York: ACM, 2023: 12-24.
|
57 |
Coda-Forno J, Witte K, Jagadish A K, et al. Inducing anxiety in large language models can induce bias[EB/OL]. [2024-09-11]. https://arxiv.org/abs/2304.11111v2.
|
58 |
矣晓沅, 谢幸. 大模型道德价值观对齐问题剖析[J]. 计算机研究与发展, 2023, 60 (9): 1926- 1945.
|
59 |
|
60 |
Zhou J Y, Hu M D, Li J N, et al. Rethinking machine ethics: Can LLMs perform moral reasoning through the lens of moral theories? [EB/OL]. [2024-09-11]. https://arxiv.org/abs/2308.15399v2.
|
61 |
Alhassan A, Zhang J, Schlegel V. "Am I the Bad One"? Predicting the Moral Judgement of the Crowd Using Pretrained Language Models[C]//Proceedings of the Thirteenth Language Resources and Evaluation Conference. Marseille, France: European Language Resources Association, 2022: 267-276.
|
62 |
Scherrer N, Shi C, Feder A, et al. Evaluating the moral beliefs encoded in llms[C]//Proceedings of Advances in Neural Information Processing Systems. New York: Curran Associates, 2023: 51778-51809.
|
63 |
Yang K L, Ji S X, Zhang T L, et al. Towards interpretable mental health analysis with large language models[C]//Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA: Association for Computational Linguistics, 2023: 6056-6077.
|
64 |
|
65 |
Bender E M, Gebru T, McMillan-Major A, et al. On the dangers of stochastic parrots: Can language models be too big?[C]//Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency. New York: ACM, 2021: 610-623.
|
66 |
Liu Y, Yao Y S, Ton J F, et al. Trustworthy LLMs: A survey and guideline for evaluating large language models' alignment[EB/OL]. [2024-09-11]. https://arxiv.org/abs/230-8.05374v2.
|
67 |
Li C, Fung M, Wang Q, et al. MentalArena: Self-play Training of Language Models for Diagnosis and Treatment of Mental Health Disorders[EB/OL]. [2024-09-11]. https://arxiv.org/abs/2410.06845v1.
|
68 |
|
69 |
|
70 |
Huang S H, Dong L, Wang W H, et al. Language is not all you need: Aligning perception with language models[C]//Proceedings of Advances in Neural Information Processing Systems. New York: Curran Associates, 2023: 72096-72109.
|
71 |
Linear-probe A. Learning transferable visual models from natural language supervision[C]//Proceedings of International Conference on Machine Learning. New York: ACM, 2021: 8748-8763.
|
72 |
|
73 |
Vaiani L, Quatra M L, Cagliero L, et al. Viper: Video-based perceiver for emotion recognition[C]//Proceedings of the 3rd International on Multimodal Sentiment Analysis Workshop and Challenge. New York: ACM, 2022: 67-73.
|
74 |
|
75 |
Bondielli A, Passaro L C. Leveraging CLIP for image emotion recognition[C]//Proceedings of the 5th Workshop on Natural Language for Artificial Intelligence. Aachen, Germany: CEUR-WS, 2021: 172-185.
|
76 |
Zhang S T, Pan Y M, Wang J Z. Learning emotion representations from verbal and nonverbal communication[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ: IEEE, 2023: 18993-19004.
|
/
〈 |
|
〉 |