Research on the mechanism of skeletal muscle repair and regeneration from the perspective of gene regulation#br#

Expand
  • 1. Gansu Provincial Hopspital of TCM, Lanzhou 730050, China
    2. Gansu Provincial Hospital, Lanzhou 730030, China

Received date: 2024-02-02

  Revised date: 2024-10-19

  Online published: 2025-03-28

Abstract

Skeletal muscle injury is the most common and inevitable type of injury in daily life. It will influence the function of the affected muscles. If not properly handled and treated, skeletal muscle injury will lead to continuous aggravation of the patient’s condition or make it hard to cure, thus limiting the patient’s physical activities, bringing great pain to the patient, and increasing the burden on the family and society. Therefore, in recent years, the mechanism research and treatment of skeletal muscle injury have attracted the attention of many clinical workers and basic researchers. This article reviews the risk factors of skeletal muscle injury and the pathological changes of reparative regeneration and discusses the research progress in the treatment of skeletal muscle injury with traditional Chinese and Western medicine, so as to provide references for the mechanism research and clinical treatment of skeletal muscle injury.

Cite this article

LIN Haisheng, YOU Congxin, SHEN Jianjun, ZHAO Ning, LI Xingyong . Research on the mechanism of skeletal muscle repair and regeneration from the perspective of gene regulation#br#[J]. Science & Technology Review, 0 : 1 . DOI: 10.3981/j.issn.1000-7857.2024.01.00148

References

[1] Zhao J Q, Huang H J, Xu Q, et al. Quantitative assessment of changes in skeletal muscle injury by computer-aided analysis based on two-dimensional ultrasonography combined with contrast-enhanced ultrasonography and estimated by a modified semi-quantitative scoring system: An experimental study in a contusion model[J]. International Journal of Experimental Pathology, 2022, 103(5): 208-218.

[2] Panci G, Chazaud B. Inflammation during post-injury skeletal muscle regeneration[J]. Seminars in Cell & Developmental Biology, 2021, 119: 32-38.

[3] Paoletta M, Moretti A, Liguori S, et al. Ultrasound imaging in sport-related muscle injuries: Pitfalls and opportunities[J]. Medicina, 2021, 57(10): 1040.

[4] 陈洁. 针刺对骨骼肌损伤小鼠DEGs的影响及对UPR相关通路的调节作用[D]. 北京: 北京中医药大学, 2020.

[5] 富昱, 董宝强. 经筋辨证探析[J]. 中华中医药杂志, 2021, 36(1): 148-150.

[6] Silvers-Granelli H J, Cohen M, Espregueira-Mendes J, et al. Hamstring muscle injury in the athlete: State of the art[J]. Journal of ISAKOS, 2021, 6(3): 170-181.

[7] 卢雅梦, 雷静, 尤浩军. 骨骼肌损伤后疼痛机制及非药物治疗研究进展[J]. 中国疼痛医学杂志, 2023, 29(2): 138-143.

[8] Plotkin D L, Roberts M D, Haun C T, et al. Muscle fiber type transitions with exercise training: Shifting perspectives[J]. Sports, 2021, 9(9): 127.

[9] Miller W, Jeon S, Ye X. An examination of acute cross-over effects following unilateral low intensity concentric and eccentric exercise[J]. Sports Medicine and Health Science, 2020, 2(3): 141-152.

[10] Huegel J, Williams A A, Soslowsky L J. Rotator cuff biology and biomechanics: A review of normal and pathological conditions[J]. Current Rheumatology Reports, 2015, 17(1): 476.

[11] Thierfelder K M, Gerhardt J S, Gemescu I N, et al. Imaging of hip and thigh muscle injury: A pictorial review[J]. Insights into Imaging, 2019, 10(1): 20.

[12] Liu X G, Zeng Z G, Zhao L L, et al. Changes in inflammatory and oxidative stress factors and the protein synthesis pathway in injured skeletal muscle after contusion[J]. Experimental and Therapeutic Medicine, 2018, 15(2): 2196-2202.

[13] Howard E E, Pasiakos S M, Fussell M A, et al. Skeletal muscle disuse atrophy and the rehabilitative role of protein in recovery from musculoskeletal injury[J]. Advances in Nutrition, 2020, 11(4): 989-1001.

[14] Messner F, Hautz T, Blumer M J F, et al. Critical ischemia times and the effect of novel preservation solutions HTK-N and TiProtec on tissues of a vascularized tissue isograft[J]. Transplantation, 2017, 101(9): e301-e310.

[15] Ying W, Riopel M, Bandyopadhyay G, et al. Adipose tissue macrophage-derived exosomal miRNAs can modulate in vivo and in vitro insulin sensitivity[J]. Cell,2017,171(2):372-384.

[16] Ying W, Gao H, Dos Reis F C G, et al. miR-690, an exosomal-derived miRNA from M2-polarized macrophages, improves insulin sensitivity in obese mice[J]. Cell Metabolism, 2021, 33(4): 781-790.e5.

[17] Panduro M, Benoist C, Mathis D. T(reg) cells limit IFN-γ production to control macrophage accrual and phenotype during skeletal muscle regeneration[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(11): 2585-2593

[18] Zhang C C, Cheng N X, Qiao B K, et al. Age-related decline of interferon-gamma responses in macrophage impairs satellite cell proliferation and regeneration[J]. Journal of Cachexia, Sarcopenia and Muscle, 2020, 11(5): 1291-1305.

[19] Cutler A A, Pawlikowski B, Wheeler J R, et al. The regenerating skeletal muscle niche drives satellite cell return to quiescence[J]. iScience, 2022, 25(6): 104444.

[20] Bi J Q, Jing H, Zhou C L, et al. Regulation of skeletal myogenesis in C2C12 cells through modulation of Pax7, MyoD, and myogenin via different low-frequency electromagnetic field energies[J]. Technology and Health Care, 2022, 30(S1): 371-382.

[21] Shi L L, Zhu K C, Wang H L. Characterization of myogenic regulatory factors, myod and myf5 from Megalobrama amblycephala and the effect of lipopolysaccharide on satellite cells in skeletal muscle[J]. Gene, 2022, 834: 146608.

[22] Zammit P S. Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis[J]. Seminars in Cell & Developmental Biology, 2017, 72: 19-32.

[23] Morita T, Hayashi K. Actin-related protein 5 functions as a novel modulator of MyoD and MyoG in skeletal muscle and in rhabdomyosarcoma[J]. eLife, 2022, 11: e77746.

[24] 林建平, 王浩, 郭明玲, . 骨骼肌钝挫伤的损伤与修复机制研究进展[J]. 康复学报, 2022, 32(1): 88-94.

[25] Sleboda D A, Stover K K, Roberts T J. Diversity of extracellular matrix morphology in vertebrate skeletal muscle[J]. Journal of Morphology, 2020, 281(2): 160-169.

[26] Fang J, Sia J R, Soto J, et al. Skeletal muscle regeneration via the chemical induction and expansion of myogenic stem cells in situ or in vitro[J]. Nature Biomedical Engineering, 2021, 5(8): 864-879.

[27] Lei B K, Zhao S, Xu T, et al. TGF-β1/ERK/CTGF pathway involved in effect of acupuncture on exercise-induced skeletal muscle fibrosis[J]. Zhen Ci Yan Jiu, 2021, 46(4): 306-311.

[28] Mahdy M A A. Skeletal muscle fibrosis: An overview[J]. Cell and Tissue Research, 2019, 375(3): 575-588.

[29] Girardi F, Taleb A, Ebrahimi M, et al. TGFβ signaling curbs cell fusion and muscle regeneration[J]. Nature Communications, 2021, 12(1): 750.

[30] Stafeev I I S, Boldyreva M A, Michurina S S, et al. The efficacy of HGF/VEGF gene therapy for limb ischemia in mice with impaired glucose tolerance: Shift from angiogenesis to axonal growth and oxidative potential in skeletal muscle[J]. Cells, 2022, 11(23): 3824.

[31] Stoklund Dittlau K, Krasnow E N, Fumagalli L, et al. Generation of human motor units with functional neuromuscular junctions in microfluidic devices[J]. Journal of Visualized Experiments, 2021(175): e62959.

[32] Ronzoni F L, Giarratana N, Crippa S, et al. Guide cells support muscle regeneration and affect neuro-muscular junction organization[J]. International Journal of Molecular Sciences, 2021, 22(4): 1939.

[33] 唐赛清, 寇久社, 骞童, . 医用臭氧治疗肌肉骨骼疾病的研究进展[J]. 安徽医学, 2022, 43(1): 115-117.

[34] 寇久社, 吴涛, 张润宁, . 不同质量浓度臭氧对兔骨骼肌损伤修复过程中IL-1α与MDA的影响[J]. 临床医学研究与实践, 2017, 2(15): 1-3, 6.

[35] Yıldırım A O, Eryılmaz M, Kaldırım U, et al. Effectiveness of hyperbaric oxygen and ozone applications in tissue healing in generated soft tissue trauma model in rats: An experimental study[J]. Ulusal Travma Ve Acil Cerrahi Dergisi, 2014, 20(3): 167-175.

[36] Gawish M F, Selim S A, Abd El-Star A A, et al. Histological and immunohistochemical study of the effect of ozone versus erythropoietin on induced skeletal muscle ischemia-reperfusion injury in adult male rats[J]. Ultrastructural Pathology, 2022, 46(1): 96-109.

[37] Hao K N, Li Y H, Feng J Y, et al. Ozone promotes regeneration by regulating the inflammatory response in zebrafish[J]. International Immunopharmacology, 2015, 28(1): 369-375.

[38] Greising S M, Corona B T, Call J A. Musculoskeletal regeneration, rehabilitation, and plasticity following traumatic injury[J]. International Journal of Sports Medicine, 2020, 41(8): 495-504.

[39] Huang Y, Yu M S, Kuma A, et al. Downregulation of let-7 by electrical acupuncture increases protein synthesis in mice[J]. Frontiers in Physiology, 2021, 12: 697139.

[40] Shen S S, Lin Y B, Xu D Y, et al. Electroacupuncture promotes skeletal muscle myogenic differentiation and protein synthesis by reducing let-7c-5p levels[J]. Alternative Therapies in Health and Medicine, 2024, 30(1): 472-480.

[41] Arand M. Physical treatment options with impact on bone healing[J]. Der Unfallchirurg, 2019, 122(7): 526-533.

[42] 曹宇, 王伟, 吕欣, . 体外冲击波对大鼠骨骼肌损伤修复研究[J]. 重庆医科大学学报, 2021, 46(3): 273-278.

[43] 吕欣, 曹宇, 周达岸. 冲击波对大鼠骨骼肌钝挫伤修复及IGF-1/PI3K/AKT信号通路的影响[J]. 中国运动医学杂志, 2020, 39(12): 953-958, 987.

[44] Chen B D, Shan T Z. The role of satellite and other functional cell types in muscle repair and regeneration[J]. Journal of Muscle Research and Cell Motility, 2019, 40(1): 1-8.

[45] Luo W, Lin Z T, Chen J H, et al. TMEM182 interacts with integrin beta 1 and regulates myoblast differentiation and muscle regeneration[J]. Journal of Cachexia, Sarcopenia and Muscle, 2021, 12(6): 1704-1723.

[46] Byun S E, Sim C, Chung Y, et al. Skeletal muscle regeneration by the exosomes of adipose tissue-derived mesenchymal stem cells[J]. Current Issues in Molecular Biology, 2021, 43(3): 1473-1488.

[47] Kangari P, Talaei-Khozani T, Razeghian-Jahromi I, et al. Mesenchymal stem cells: Amazing remedies for bone and cartilage defects[J]. Stem Cell Research & Therapy, 2020, 11(1): 492.

[48] Frudinger A, Marksteiner R, Pfeifer J, et al. Skeletal muscle-derived cell implantation for the treatment of sphincter-related faecal incontinence[J]. Stem Cell Research & Therapy, 2018, 9(1): 233.

[49] Kirk B, Duque G. Muscle and bone: An indissoluble union[J]. Journal of Bone and Mineral Research, 2022, 37(7): 1211-1212.

[50] Chen R E, Voloshin I. Long head of biceps injury: Treatment options and decision making[J]. Sports Medicine and Arthroscopy Review, 2018, 26(3): 139-144.

[51] Kozusko S D, Liu X, Riccio C A, et al. Selecting a free flap for soft tissue coverage in lower extremity reconstruction[J]. Injury, 2019, 50: S32-S39.

[52] 崔玮, 蔡震. 背阔肌皮瓣移植在体表肿瘤切除后皮肤缺损中的应用[J]. 中国皮肤性病学杂志, 2022, 36(9): 1039-1043.

[53] Md J H, Liming Qing MD P, Panfeng Wu MD P, et al. Large wounds reconstruction of the lower extremity with combined latissimus dorsi musculocutaneous flap and flow-through anterolateral thigh perforator flap transfer[J]. Microsurgery, 2021, 41(6): 533-542.

[54] 李贞, 孙远远, 李伦兰. 和营止痛汤辨证内服对股骨颈骨折空心螺钉内固定术后患者康复的效果观察[J]. 中国实验方剂学杂志, 2018, 24(24): 195-200.

[55] 陈伟, 肖会清, 王雨来, . 基于网络药理学方法的七厘散在急性运动性损伤康复中的作用机制探讨[J]. 时珍国医国药, 2021, 32(4): 832-836.

[56] 朱志飞, 樊启猛, 刘有志, . 身痛逐瘀汤方证释义及其现代研究进展[J]. 中国中医药信息杂志, 2020, 27(8): 136-140.

 [57]  钟静, 蒋顺琬, 佘锐豪, . 清热化瘀与清热益气化瘀中药巴布膏对PGE2在新西兰兔急性软组织损伤模型中的影响[J/OL]. 中华中医药学刊:1-11[2023-02-22].https://www.sinomed.ac.cn/article.do?ui=2023371407

 [58] 王钢, 赵勇. 消肿止痛膏对腓肠肌损伤大鼠MEF2 mRNA与蛋白表达的影响[J]. 中国骨伤, 2019, 32(6): 578-581.

[59] 刘晓燕, 栗申, 陈毅楠, . 身痛逐瘀汤对掌骨斜行骨折临床疗效及对手功能恢复、炎症因子的影响[J]. 中华中医药学刊, 2020, 38(9): 89-91.

[60] 周可林, 董硕, 魏培栋, . 振腹推拿治疗经筋病的原理探析[J]. 北京中医药大学学报, 2021, 44(7): 635-640.

[61] 李建飞, 李倩, 李佳潞, . 悬吊推拿运动治疗颈型颈椎病的持续疗效[J]. 中国康复理论与实践, 2021, 27(7): 834-839.

[62] 卿伦学, 安易, 刘长信, . 九步八分推拿法对膝关节骨性关节炎女性患者股直肌超声灌注成像的影响[J]. 中医杂志, 2022, 63(9): 851-855.

[63] 杨之雪, 朱正威, 贺舟, . 推拿联合跑台训练对急性骨骼肌损伤大鼠肌蛋白代谢相关因子的影响[J]. 中华物理医学与康复杂志, 2020, 42(5): 385-391.

[64] 孔亚敏, 严隽陶, 马丙祥, . 推拿振法干预坐骨神经损伤模型大鼠MyoD表达及肌卫星细胞的增殖与分化[J]. 中国组织工程研究, 2022, 26(8): 1216-1222.

[65] 王兰兰, 薛惠天, 孙梦龙, . 推拿? 法对兔骨骼肌急性钝挫伤组织TNF-α及SphK1S1PR3表达的影响[J]. 中国中医药信息杂志, 2023, 30(6): 129-134.

[66] 马翔, 唐成林, 赵丹丹, . 推拿对失神经肌萎缩大鼠肌特异性microRNA和肌卫星细胞增殖分化相关因子的影响[J]. 中国康复理论与实践, 2020, 26(11): 1297-1304.

[67] 徐森磊, 张宏如, 顾一煌. 艾灸温热刺激对血流量的增加作用及其相关机制探讨[J]. 针刺研究, 2018, 43(11): 738-743.

[68] 林业武, 曹磊, 陈美雄, . 温和灸对大鼠肌筋膜激痛点肌卫星细胞激活及成肌修复的影响[J]. 中国中医基础医学杂志, 2021, 27(4): 583-586, 607.

[69] 周登芳, 莫捷, 王颖超, . 艾灸命门穴对大鼠运动耐力及骨骼肌乳酸、超氧化物歧化酶水平的影响[J]. 世界中西医结合杂志, 2022, 17(2): 277-279, 305.

[70] 方圆, 许能贵. 针刺腰痛穴配合运动疗法治疗急性腰扭伤36例临床观察[J]. 湖南中医杂志, 2019, 35(11): 74-76.

[71] 郑璇燕, 刘宇. 针刺腰痛穴结合麦肯基运动疗法治疗急性腰痛的临床观察[J]. 中西医结合研究, 2019, 11(6): 306-307.

[72] 于学平, 魏铭胤, 邹伟, . 针刺“腰痛穴” 治疗中风后手指拘挛临床疗效观察[J]. 中医药学报, 2021, 49(1): 27-30.

[73] 杨宁, 周越, 王瑞元, . 针刺对骨骼肌拉伤恢复进程中纤维化因子的影响[J]. 北京体育大学学报, 2018, 41(9): 70-74, 82.

[74] 徐周, 殷继超, 胡兴律, . 针刺治疗骨骼肌损伤分子生物学机制研究进展[J]. 辽宁中医药大学学报, 2022, 24(4): 192-196.

[75] 丁海丽, 黄增浩, 任在方, . 针刺对大鼠运动性骨骼肌损伤内质网应激的干预作用及机制[J]. 中国应用生理学杂志, 2021, 37(4): 359-364.

[76] 尚画雨, 白胜超, 夏志, . 针刺对大负荷运动大鼠骨骼肌线粒体结构和功能的影响[J]. 中国康复医学杂志, 2018, 33(8): 901-909.

[77] 陈玉佩, 刘通, 许玥, . 电针“委中” 穴对大鼠腰多裂肌损伤后细胞外基质中相关蛋白表达的影响[J]. 针刺研究, 2019, 44(5): 341-346.

[78] 陈玉佩, 许玥, 陈洁, . 基于大鼠腰多裂肌损伤模型探讨电针“委中” 穴对多裂肌超微结构及结蛋白表达的影响[J]. 辽宁中医杂志, 2020, 47(3): 30-34, 218.


Outlines

/