Special to S & T Review

Generation and development of attosecond light sources

  • Ji WANG , 1, 2 ,
  • Kun ZHAO , 1, 2, *
Expand
  • 1. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
  • 2. Songshan Lake Materials Laboratory, Dongguan 523808, China

Received date: 2023-12-18

  Online published: 2025-04-01

Copyright

All rights reserved. Unauthorized reproduction is prohibited.

Cite this article

Ji WANG , Kun ZHAO . Generation and development of attosecond light sources[J]. Science & Technology Review, 2025 , 43(4) : 19 -29 . DOI: 10.3981/j.issn.1000-7857.2023.12.01810

1
Shapiro S L. Introduction: A historical overview[M]//Shapiro S L, ed. Topics in Applied Physics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1977: 1-15.

2
Edgerton H E . Electronic flash, strobe (3rd edition)[M]. Cambridge: The MIT Press, 1987.

3
Maiman T H . Stimulated optical radiation in ruby[J]. Nature, 1960, 187: 493- 494.

DOI

4
Crowell M H . Characteristics of mode-coupled lasers[J]. IEEE Journal of Quantum Electronics, 1965, 1 (1): 12- 20.

DOI

5
DeMaria A J , Stetser D A , Heynau H . Self mode-locking of lasers with saturable absorbers[J]. Applied Physics Letters, 1966, 8 (7): 174- 176.

DOI

6
Mocker H W , Collins R J . Mode competition and self-locking effects in a q-switched ruby laser[J]. Applied Physics Letters, 1965, 7 (10): 270- 273.

DOI

7
Hargrove L E , Fork R L , Pollack M A . Locking of He-Ne laser modes induced by synchronous intracavity modulation[J]. Applied Physics Letters, 1964, 5 (1): 4- 5.

DOI

8
Ippen E P , Shank C V , Dienes A . Passive mode locking of the cw dye laser[J]. Applied Physics Letters, 1972, 21 (8): 348- 350.

DOI

9
Shank C V , Ippen E P . Subpicosecond kilowatt pulses from a mode-locked cw dye laser[J]. Applied Physics Letters, 1974, 24 (8): 373- 375.

DOI

10
孙文山, 林世雄. 阿秒光谱技术的探讨[J]. 光学技术, 1985, 11 (3): 14- 15.

11
Agostini P , DiMauro L F . The physics of attosecond light pulses[J]. Reports on Progress in Physics, 2004, 67 (8): 1563.

DOI

12
赵昆. 激光、啁啾脉冲放大、超快光学和诺贝尔奖[J]. 科学通报, 2019, 64 (14): 1433- 1440.

13
Fork R L , Cruz C H , Becker P C , et al. Compression of optical pulses to six femtoseconds by using cubic phase compensation[J]. Optics Letters, 1987, 12 (7): 483- 485.

14
Nisoli M , De Silvestri S , Svelto O . Generation of high energy 10 fs pulses by a new pulse compression technique[J]. Applied Physics Letters, 1996, 68 (20): 2793- 2795.

DOI

15
Liu H , Wang G Y , Jiang J W , et al. Sub-10-fs pulse generation from a blue laser-diode-pumped Ti: Sapphire oscillator[J]. Chinese Optics Letters, 2020, 18 (7): 071402.

DOI

16
Sutter D H , Steinmeyer G , Gallmann L , et al. Semiconductor saturable-absorber mirror assisted Kerr-lens modelocked Ti: Sapphire laser producing pulses in the two-cycle regime[J]. Optics Letters, 1999, 24 (9): 631- 633.

DOI

17
He P , Liu Y Y , Zhao K , et al. High-efficiency supercontinuum generation in solid thin plates at 0.1 TW level[J]. Optics Letters, 2017, 42 (3): 474- 477.

DOI

18
Huang P , Fang S B , Gao Y T , et al. Simple method for simultaneous long-term stabilization of relative timing and carrier-envelope phase in waveform synthesis[J]. Applied Physics Letters, 2019, 115 (3): 031102.

DOI

19
Silva F , Alonso B , Holgado W , et al. Strategies for achieving intense single-cycle pulses with in-line post-compression setups[J]. Optics Letters, 2018, 43 (2): 337- 340.

DOI

20
Hassan M T , Luu T T , Moulet A , et al. Optical attosecond pulses and tracking the nonlinear response of bound electrons[J]. Nature, 2016, 530 (7588): 66- 70.

DOI

21
Keldysh L V . Ionization in the field of a strong electromagnetic wave[J]. Soviet Physics-JETP, 1965, 20 (5): 1307.

22
McPherson A , Gibson G , Jara H , et al. Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases[J]. Journal of the Optical Society of America B, 1987, 4 (4): 595.

DOI

23
Ferray M , L'Huillier A , Li X F , et al. Multiple-harmonic conversion of 1064 nm radiation in rare gases[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 1988, 21 (3): L31- L35.

DOI

24
Corkum P B . Plasma perspective on strong field multiphoton ionization[J]. Physical Review Letters, 1993, 71 (13): 1994- 1997.

DOI

25
Lewenstein M , Balcou P H , Ivanov M Y , et al. Theory of high-harmonic generation by low-frequency laser fields[J]. Physical Review A, 1994, 49 (3): 2117- 2132.

DOI

26
Corkum P B , Burnett N H , Ivanov M Y . Subfemtosecond pulses[J]. Optics Letters, 1994, 19 (22): 1870- 1872.

DOI

27
Hentschel M , Kienberger R , Spielmann C H , et al. Attosecond metrology[J]. Nature, 2001, 414: 509- 513.

DOI

28
Li J , Ren X M , Yin Y C , et al. 53-attosecond X-ray pulses reach the carbon K-edge[J]. Nature Communications, 2017, 8 (1): 186.

29
Gaumnitz T , Jain A , Pertot Y , et al. Streaking of 43-attosecond soft-X-ray pulses generated by a passively CEP-stable mid-infrared driver[J]. Optics Express, 2017, 25 (22): 27506- 27518.

DOI

30
Paul P M , Toma E S , Breger P , et al. Observation of a train of attosecond pulses from high harmonic generation[J]. Science, 2001, 292 (5522): 1689- 1692.

DOI

31
Muller H G . Reconstruction of attosecond harmonic beating by interference of two-photon transitions[J]. Applied Physics B, 2002, 74 (1): s17- s21.

32
Klünder K , Dahlström J M , Gisselbrecht M , et al. Probing single-photon ionization on the attosecond time scale[J]. Physical Review Letters, 2011, 106 (14): 143002.

DOI

33
Calegari F , Ayuso D , Trabattoni A , et al. Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses[J]. Science, 2014, 346 (6207): 336- 339.

DOI

34
Saito N , Douguet N , Sannohe H , et al. Attosecond electronic dynamics of core-excited states of N2O in the soft x-ray region[J]. Physical Review Research, 2021, 3 (4): 043222.

35
赵昆. 阿秒光学简史: 2023年度诺贝尔物理学奖背后的故事[J]. 科学通报, 2023, 68 (36): 4918- 4926.

36
Zhan M J , Ye P , Teng H , et al. Generation and measurement of isolated 160-attosecond XUV laser pulses at 82 eV[J]. Chinese Physics Letters, 2013, 30 (9): 093201.

DOI

37
王向林, 徐鹏, 李捷, 等. 利用自研阿秒条纹相机测得159 as孤立阿秒脉冲[J]. 中国激光, 2020, 47 (4): 329- 332.

38
Yang Z , Cao W , Chen X , et al. All-optical frequency-resolved optical gating for isolated attosecond pulse reconstruction[J]. Optics Letters, 2020, 45 (2): 567- 570.

DOI

39
Wang X W , Wang L , Xiao F , et al. Generation of 88 as isolated attosecond pulses with double optical gating[J]. Chinese Physics Letters, 2020, 37 (2): 023201.

DOI

40
Zhong S Y , Teng H , Zhu X X , et al. Characterizing 86-attosecond isolated pulses based on amplitude gating of high harmonic generation[J]. Chinese Optics Letters, 2023, 21 (11): 113201.

DOI

41
Wang J C , Xiao F , Wang L , et al. Fast phase retrieval for broadband attosecond pulse characterization[J]. Optics Express, 2023, 31 (26): 43224- 43233.

DOI

42
Wei Z Y , Xu S Y , Jiang Y J , et al. Principle and progress of attosecond pulse generation[J]. Chinese Science Bulletin, 2021, 66 (8): 889- 901.

DOI

43
Klaiber M , Hatsagortsyan K Z , Keitel C H . Fully relativistic laser-induced ionization and recollision processes[J]. Physical Review A, 2007, 75 (6): 063413.

DOI

44
Tate J , Auguste T , Muller H G , et al. Scaling of wavepacket dynamics in an intense midinfrared field[J]. Physical Review Letters, 2007, 98 (1): 013901.

DOI

45
Colosimo P , Doumy G , Blaga C I , et al. Scaling strongfield interactions towards the classical limit[J]. Nature Physics, 2008, 4: 386- 389.

DOI

46
Shiner A D , Trallero-Herrero C , Kajumba N , et al. Wavelength scaling of high harmonic generation efficiency[J]. Physical Review Letters, 2009, 103 (7): 073902.

DOI

47
Cirmi G , Lai C J , Huang S W , et al. Tunable high harmonic generation driven by a visible optical parametric amplifier[J]. EPJ Web of Conferences, 2013, 41: 01002.

DOI

48
Ravasio A , Gauthier D , Maia F R N C , et al. Single-shot diffractive imaging with a table-top femtosecond soft X-ray laser-harmonics source[J]. Physical Review Letters, 2009, 103 (2): 028104.

DOI

49
Sekikawa T , Kosuge A , Kanai T , et al. Nonlinear optics in the extreme ultraviolet[J]. Nature, 2004, 432 (7017): 605- 608.

DOI

50
Manschwetus B , Rading L , Campi F , et al. Two-photon double ionization of Neon using an intense attosecond pulse train[J]. Physical Review A, 2016, 93 (6): 061402.

DOI

51
魏志义, 钟诗阳, 贺新奎, 等. 阿秒光学进展及发展趋势[J]. 中国激光, 2021, 48 (5): 9- 24.

52
Rothhardt J , Krebs M , Hädrich S , et al. Absorption-limited and phase-matched high harmonic generation in the tight focusing regime[J]. New Journal of Physics, 2014, 16 (3): 033022.

DOI

53
Lewenstein M , Salières P , L'Huillier A . Phase of the atomic polarization in high-order harmonic generation[J]. Physical Review A, 1995, 52 (6): 4747- 4754.

DOI

54
Popmintchev T , Chen M C , Bahabad A , et al. Phase matching of high harmonic generation in the soft and hard X-ray regions of the spectrum[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106 (26): 10516- 10521.

55
Paul A , Gibson E A , Zhang X , et al. Phase-matching techniques for coherent soft X-ray generation[J]. IEEE Journal of Quantum Electronics, 2006, 42 (1): 14- 26.

DOI

56
Heyl C M , Güdde J , L'Huillier A , et al. High-order harmonic generation with μJ laser pulses at high repetition rates[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2012, 45 (7): 074020.

DOI

57
Chini M , Zhao K , Chang Z H . The generation, characterization and applications of broadband isolated attosecond pulses[J]. Nature Photonics, 2014, 8: 178- 186.

DOI

58
Tcherbakoff O , Mével E , Descamps D , et al. Time-gated high-order harmonic generation[J]. Physical Review A, 2003, 68 (4): 043804.

DOI

59
Chang Z H . Single attosecond pulse and xuv supercontinuum in the high-order harmonic plateau[J]. Physical Review A, 2004, 70 (4): 043802.

DOI

60
Sansone G , Benedetti E , Calegari F , et al. Isolated singlecycle attosecond pulses[J]. Science, 2006, 314 (5798): 443- 446.

DOI

61
Sola I J , Mével E , Elouga L , et al. Controlling attosecond electron dynamics by phase-stabilized polarization gating[J]. Nature Physics, 2006, 2: 319- 322.

DOI

62
Sansone G , Poletto L , Nisoli M . High-energy attosecond light sources[J]. Nature Photonics, 2011, 5: 655- 663.

DOI

63
Chang Z H . Chirp of the single attosecond pulse generated by a polarization gating[J]. Physical Review A, 2005, 71 (2): 023813.

DOI

64
Merdji H , Auguste T , Boutu W , et al. Isolated attosecond pulses using a detuned second-harmonic field[J]. Optics Letters, 2007, 32 (21): 3134- 3136.

DOI

65
Zhao K , Zhang Q , Chini M , et al. Tailoring a 67 attosecond pulse through advantageous phase-mismatch[J]. Optics Letters, 2012, 37 (18): 3891- 3893.

DOI

66
Wang X L , Xu P , Li J , et al. Isolated attosecond pulse with 159 as duration measured by home built attosecond streaking camera[J]. Chinese Journal of Lasers, 2020, 47 (4): 0415002.

DOI

67
Chang Z H . Controlling attosecond pulse generation with a double optical gating[J]. Physical Review A, 2007, 76 (5): 051403.

DOI

68
Mashiko H , Gilbertson S , Li C Q , et al. Double optical gating of high-order harmonic generation with carrier-envelope phase stabilized lasers[J]. Physical Review Letters, 2008, 100 (10): 103906.

DOI

69
Feng X M , Gilbertson S , Mashiko H , et al. Generation of isolated attosecond pulses with 20 to 28 femtosecond lasers[J]. Physical Review Letters, 2009, 103 (18): 183901.

DOI

70
Mashiko H , Bell M J , Beck A R , et al. Tunable frequency-controlled isolated attosecond pulses characterized by either 750 nm or 400 nm wavelength streak fields[J]. Optics Express, 2010, 18 (25): 25887- 25895.

DOI

71
Li J , Chew A , Hu S Y , et al. Double optical gating for generating high flux isolated attosecond pulses in the soft X-ray regime[J]. Optics Express, 2019, 27 (21): 30280- 30286.

DOI

72
Mashiko H , Gilbertson S , Chini M , et al. Extreme ultraviolet supercontinua supporting pulse durations of less than one atomic unit of time[J]. Optics Letters, 2009, 34 (21): 3337- 3339.

DOI

73
Gilbertson S , Mashiko H , Li C Q , et al. A low-loss, robust setup for double optical gating of high harmonic generation[J]. Applied Physics Letters, 2008, 92 (7): 071109.

DOI

74
Gilbertson S , Wu Y , Khan S D , et al. Isolated attosecond pulse generation using multicycle pulses directly from a laser amplifier[J]. Physical Review A, 2010, 81 (4): 043810.

DOI

75
Mashiko H , Oguri K , Sogawa T . Attosecond pulse generation in carbon K-edge region (284 eV) with sub-250 μJ driving laser using generalized double optical gating method[J]. Applied Physics Letters, 2013, 102 (17): 171111.

DOI

76
Kim K T , Zhang C M , Ruchon T , et al. Photonic streaking of attosecond pulse trains[J]. Nature Photonics, 2013, 7: 651- 656.

DOI

77
Hammond T J , Brown G G , Kim K T , et al. Attosecond pulses measured from the attosecond lighthouse[J]. Nature Photonics, 2016, 10: 171- 175.

DOI

78
Schultze M , Ramasesha K , Pemmaraju C D , et al. Attosecond band-gap dynamics in silicon[J]. Science, 2014, 346 (6215): 1348- 1352.

DOI

79
Chen S H , Bell M J , Beck A R , et al. Light-induced states in attosecond transient absorption spectra of laser-dressed helium[J]. Physical Review A, 2012, 86 (6): 063408.

DOI

80
Wang X W , Chini M , Cheng Y , et al. In situ calibration of an extreme ultraviolet spectrometer for attosecond transient absorption experiments[J]. Applied Optics, 2013, 52 (3): 323- 329.

DOI

81
Cheng Y , Chini M , Wang X W , et al. Reconstruction of an excited-state molecular wave packet with attosecond transient absorption spectroscopy[J]. Physical Review A, 2016, 94 (2): 023403.

DOI

82
Saito N , Sannohe H , Ishii N , et al. Real-time observation of electronic, vibrational, and rotational dynamics in nitric oxide with attosecond soft X-ray pulses at 400 eV[J]. Optica, 2019, 6 (12): 1542.

DOI

83
Pertot Y , Schmidt C , Matthews M , et al. Time-resolved X-ray absorption spectroscopy with a water window high-harmonic source[J]. Science, 2017, 355 (6322): 264- 267.

DOI

84
Buades B , Picón A , Berger E , et al. Attosecond state-resolved carrier motion in quantum materials probed by soft X-ray XANES[J]. Applied Physics Reviews, 2021, 8 (1): 011408.

DOI

85
Chew A , Douhuet N , Cariker C , et al. Attosecond transient absorption spectrum of argon at the L2, 3 edge[J]. Physical Review A, 2018, 97 (3): 031407.

DOI

86
Landsman A S , Weger M , Maurer J , et al. Ultrafast resolution of tunneling delay time[J]. Optica, 2014, 1 (5): 343- 349.

DOI

87
Sainadh U S , Xu H , Wang X S , et al. Attosecond angular streaking and tunnelling time in atomic hydrogen[J]. Nature, 2019, 568 (7750): 75- 77.

DOI

88
Ramos R , Spierings D , Racicot I , et al. Measurement of the time spent by a tunnelling atom within the barrier region[J]. Nature, 2020, 583 (7817): 529- 532.

DOI

89
Isinger M , Squibb R J , Busto D , et al. Photoionization in the time and frequency domain[J]. Science, 2017, 358 (6365): 893- 896.

DOI

90
Itatani J , Quéré F , Yudin G L , et al. Attosecond streak camera[J]. Physical Review Letters, 2002, 88 (17): 173903.

DOI

91
Mairesse Y , Quéré F . Frequency-resolved optical gating for complete reconstruction of attosecond bursts[J]. Physical Review A, 2005, 71: 011401.

DOI

92
Kienberger R , Goulielmakis E , Uiberacker M , et al. Atomic transient recorder[J]. Nature, 2004, 427 (6977): 817- 821.

DOI

93
Cavalieri A L , Müller N , Uphues T , et al. Attosecond spectroscopy in condensed matter[J]. Nature, 2007, 449 (7165): 1029- 1032.

DOI

94
Schultze M , Fiess M , Karpowicz N , et al. Delay in photoemission[J]. Science, 2010, 328 (5986): 1658- 1662.

DOI

95
Nagele S , Pazourek R , Feist J , et al. Time-resolved photoemission by attosecond streaking: Extraction of time information[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2011, 44 (8): 081001.

DOI

96
Neppl S , Ernstorfer R , Bothschafter E M , et al. Attosecond time-resolved photoemission from core and valence states of magnesium[J]. Physical Review Letters, 2012, 109 (8): 087401.

DOI

97
Förg B , Schötz J , Süßmann F , et al. Attosecond nanoscale near-field sampling[J]. Nature Communications, 2016, 7: 11717.

DOI

98
Sabbar M , Heuser S , Boge R , et al. Resonance effects in photoemission time delays[J]. Physical Review Letters, 2015, 115 (13): 133001.

DOI

99
Ossiander M , Siegrist F , Shirvanyan V , et al. Attosecond correlation dynamics[J]. Nature Physics, 2017, 13: 280- 285.

DOI

100
Siek F , Neb S , Bartz P , et al. Angular momentum-induced delays in solid-state photoemission enhanced by intra-atomic interactions[J]. Science, 2017, 357 (6357): 1274- 1277.

DOI

101
Ossiander M , Riemensberger J , Neppl S , et al. Absolute timing of the photoelectric effect[J]. Nature, 2018, 561 (7723): 374- 377.

DOI

102
Biswas S , Förg B , Ortmann L , et al. Probing molecular environment through photoemission delays[J]. Nature Physics, 2020, 16: 778- 783.

DOI

103
Haynes D C , Wurzer M , Schletter A , et al. Clocking auger electrons[J]. Nature Physics, 2021, 17 (4): 512- 518.

DOI

104
Garg M , Zhan M , Luu T T , et al. Multi-petahertz electronic metrology[J]. Nature, 2016, 538 (7625): 359- 363.

DOI

105
Goulielmakis E , Yakovlev V S , Cavalieri A L , et al. Attosecond control and measurement: Lightwave electronics[J]. Science, 2007, 317 (5839): 769- 775.

DOI

106
Pollard W T , Lee S , Mathies R A . Wave packet theory of dynamic absorption spectra in femtosecond pump-probe experiments[J]. The Journal of chemical physics, 1990, 92 (7): 4012- 4029.

DOI

107
Mathies R A , Brito Cruz C H , Pollard W T , et al. Direct observation of the femtosecond excited-state Cis-trans isomerization in bacteriorhodopsin[J]. Science, 1988, 240 (4853): 777- 779.

DOI

108
Loh Z H , Khalil M , Correa R E , et al. Quantum state-resolved probing of strong-field-ionized xenon atoms using femtosecond high-order harmonic transient absorption spectroscopy[J]. Physical Review Letters, 2007, 98 (14): 143601.

DOI

109
Goulielmakis E , Loh Z H , Wirth A , et al. Real-time observation of valence electron motion[J]. Nature, 2010, 466 (7307): 739- 743.

DOI

110
Takahashi E J , Lan P F , Mücke O D , et al. Attosecond nonlinear optics using gigawatt-scale isolated attosecond pulses[J]. Nature Communications, 2013, 4: 2691.

DOI

111
Rothhardt J , Hädrich S , Klenke A , et al. 53 W average power few-cycle fiber laser system generating soft X-rays up to the water window[J]. Optics Letters, 2014, 39 (17): 5224- 5227.

DOI

112
Teichmann S M , Silva F , Cousin S L , et al. 0.5-keV Soft X-ray attosecond continua[J]. Nature Communications, 2016, 7: 11493.

DOI

113
Johnson A S , Austin D R , Wood D A , et al. High-flux soft X-ray harmonic generation from ionization-shaped few-cycle laser pulses[J]. Science Advances, 2018, 4 (5): eaar3761.

DOI

114
Fu Y X , Nishimura K , Shao R Z , et al. High efficiency ultrafast water-window harmonic generation for single-shot soft X-ray spectroscopy[J]. Communications Physics, 2020, 3: 92.

DOI

115
Huijts J , Fernandez S , Gauthier D , et al. Broadband coherent diffractive imaging[J]. Nature Photonics, 2020, 14: 618- 622.

DOI

116
陶琛玉, 雷建廷, 余璇, 等. 阿秒脉冲的发展及其在原子分子超快动力学中的应用[J]. 物理学报, 2023, 72 (5): 053202.

117
Frati F , Hunault M O J Y , de Groot F M F . Oxygen K-edge X-ray absorption spectra[J]. Chemical Reviews, 2020, 120 (9): 4056- 4110.

DOI

118
Krausz F , Ivanov M . Attosecond physics[J]. Reviews of Modern Physics, 2009, 81 (1): 163- 234.

DOI

119
Nayak A , Orfanos I , Makos I , et al. Multiple ionization of Argon via multi-XUV-photon absorption induced by 20-GW high-order harmonic laser pulses[J]. Physical Review A, 2018, 98 (2): 023426.

DOI

120
Senfftleben B , Kretschmar M , Hoffmann A , et al. Highly non-linear ionization of atoms induced by intense high-harmonic pulses[J]. Journal of Physics: Photonics, 2020, 2 (3): 034001.

DOI

121
Maclot S , Lahl J , Peschel J , et al. Dissociation dynamics of the diamondoid adamantane upon photoionization by XUV femtosecond pulses[J]. Scientific Reports, 2020, 10 (1): 2884.

DOI

122
Young L , Ueda K , Gühr M , et al. Roadmap of ultrafast X-ray atomic and molecular physics[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2018, 51 (3): 032003.

DOI

123
Ishizaka K , Kiss T , Yamamoto T , et al. Femtosecond core-level photoemision spectroscopy on 1T-TaS2 using a 60-eV laser source[J]. Physical Review B, 2011, 83 (8): 081104.

DOI

124
Okazaki K , Ota Y , Kotani Y , et al. Octet-line node structure of superconducting order parameter in KFe2As2[J]. Science, 2012, 337 (6100): 1314- 1317.

DOI

125
Dörner R , Mergel V , Jagutzki O , et al. Cold target recoil ion momentum spectroscopy: A 'momentum microscope' to view atomic collision dynamics[J]. Physics Reports, 2000, 330 (2/3): 95- 192.

126
Damascelli A , Hussain Z , Shen Z X . Angle-resolved photoemission studies of the cuprate superconductors[J]. Reviews of Modern Physics, 2003, 75 (2): 473- 541.

DOI

127
Shan B , Chang Z H . Dramatic extension of the high-order harmonic cutoff by using a long-wavelength driving field[J]. Physical Review A, 2001, 65 (1): 011804.

DOI

128
Popmintchev D, Chen M C, Hernández-García C, et al. Ultrahigh-efficiency high harmonic generation driven by UV lasers[C]//Proceedings of CLEO: 2013. Washington, D.C. : OSA, 2013: QW1A. 5.

129
王阁阳, 吕仁冲, 许思源, 等. 高重复频率高次谐波驱动源技术[J]. 科学通报, 2021, 66 (8): 924- 939.

130
Russbueldt P , Mans T , Weitenberg J , et al. Compact diode-pumped 1.1 kW Yb: YAG Innoslab femtosecond amplifier[J]. Optics Letters, 2010, 35 (24): 4169- 4171.

DOI

131
Zeng Z N , Cheng Y , Song X H , et al. Generation of an extreme ultraviolet supercontinuum in a two-color laser field[J]. Physical Review Letters, 2007, 98 (20): 203901.

DOI

132
Kühn S , Dumergue M , Kahaly S , et al. The ELI-ALPS facility: The next generation of attosecond sources[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2017, 50 (13): 132002.

DOI

133
Borzsonyi A, Cormier E, Lopez-Martens R, et al. Latest progress on the few-cycle, high average power lasers of ELI-ALPS[C]//Proceedings of Ultrafast Optics 2023-UFOXⅢ. Washington, D C: Optica Publishing Group, 2023: M4.1.

134
Orfanos I , Skantzakis E , Nayak A , et al. Two-XUV-photon double ionization of Neon[J]. Physical Review A, 2022, 106 (4): 043117.

DOI

135
Appi E , Weissenbilder R , Nagyillés B , et al. Two phasematching regimes in high-order harmonic generation[J]. Optics Express, 2023, 31 (20): 31687- 31697.

DOI

136
Ye P , Gulyás Oldal L , Csizmadia T , et al. High-flux 100 kHz attosecond pulse source driven by a high-average power annular laser beam[J]. Ultrafast Science, 2022, 2022: 9823783.

137
Ye P , Csizmadia T , Oldal L G , et al. Attosecond pulse generation at ELI-ALPS 100 kHz repetition rate beamline[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53 (15): 154004.

DOI

138
Lucchini M , Medeghini F , Wu Y X , et al. Controlling Floquet states on ultrashort time scales[J]. Nature Communications, 2022, 13 (1): 7103.

DOI

139
Ahmadi H , Plésiat E , Moioli M , et al. Attosecond photoionisation time delays reveal the anisotropy of the molecular potential in the recoil frame[J]. Nature Communications, 2022, 13 (1): 1242.

DOI

140
Leshchenko V, Scarborough T, Ronningen T, et al. National eXtreme Ultrafast Science (NeXUS) user facility[C]//Proceedings of CLEO 2023. Washington, D C: Optica Publishing Group, 2023: 1-2.

141
Yamanouchi K. What is ALFA?[EB/OL]. (2023-02-28)[2023-11-25]. http://www.alfa-coast.org/about/index_en.html.

142
Teng H , He X K , Zhao K , et al. Attosecond laser station[J]. Chinese Physics B, 2018, 27 (7): 074203.

DOI

Outlines

/