Exclusive: Large-Scale Scientific Facilities

Current status and prospect of particle accelerator-driven synchrotron radiation light source

  • JIAO Yi
Expand
  • 1. Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2025-01-14

  Revised date: 2025-02-14

  Online published: 2025-04-11

Abstract

As one kind of large-scale scientific facilities, particle accelerators play a vital role in the progress of global science and technology. Synchrotron radiation light sources driven by storage ring accelerators, have already undergone four generations of development. They are playing an increasingly significant role in both basic scientific research and applied science fields. This article briefly reviews the generational evolution of particle accelerators and synchrotron radiation light sources. It offers a detailed description of the technological features of the fourth-generation synchrotron radiation light sources based on diffraction-limited storage rings, such as compact multi-bend achromat (MBA) design, synergistic breakthroughs in small-aperture magnet and advanced vacuum coating technologies. Following a birdview of global advancements in fourth-generation synchrotron radiation facilities, the latest progress of the High Energy Photon Source is reported in detail. Moreover, it makes a preliminary exploration into the potential directions of the future development of accelerator-based light sources, including breakthrough in beam emittance limit, AI-driven real-time beam control, integration of storage ring light source with free-electron laser principles.

Cite this article

JIAO Yi . Current status and prospect of particle accelerator-driven synchrotron radiation light source[J]. Science & Technology Review, 2025 , 43(5) : 37 -44 . DOI: 10.3981/j.issn.1000-7857.2025.01.00071

References

[1] 张闯.北京正负电子对撞机及其重大改造工程[J].物理, 2005, 34(4):262-269.
[2] 合肥同步辐射装置[J].中国科学院院刊, 2019, 34(增刊2):26-29.
[3] 肖国青,李振中.兰州重离子研究装置[J].中国科学院院刊, 2009, 24(1):97-101.
[4] 王立楠.上海同步辐射光源通过验收[J].强激光与粒子束, 2010, 22(2):456 Brookhaven National Labortory website[EB/OL].[2025-01-10] . https://www.bnl.gov/world/.
[5] Brookhaven National Labortory website[EB/OL].[2025-01-10] . https://www.bnl.gov/world/.
[6] CERN website[EB/OL].[2025-01-10] . https://home.cern/.
[7] Zhao Z T. Storage ring light sources[J]. Reviews of Accelerator Science and Technology, 2010, 3(1):57-76.
[8] 同步辐射光源[EB/OL].(2019-07-05)[2021-05-01] . https://ihep.cas.cn/edu/tpzs/202105/P020210531613560847081.pdf.
[9] Emma P, Akre R, Arthur J, et al. First lasing and operation of an ångstrom-wavelength free-electron laser[J]. Nature Photonics, 2010, 4:641-647.
[10] Hettel R. DLSR design and plans:An international overview[J]. Journal of Synchrotron Radiation, 2014, 21(5):843-855.
[11] Martensson N, Eriksson M. The Saga of MAX IV, the first multi-bend achromat synchrotron light source[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 907:97-104.
[12] Schliessmann F, Arnold M, Juergensen L, et al. Realization of a multi-turn energy recovery accelerator[J]. Nature Physics, 2023, 19:597-602.
[13] Jiao Y, Xu G, Cui X H, et al. The HEPS project[J]. Journal of Synchrotron Radiation, 2018, 25(6):1611-1618.
[14] 白正贺,刘刚文,何天龙,等.合肥先进光源储存环初步物理设计[J].强激光与粒子束, 2022, 34(10):104003.
[15] 焦毅,白正贺,李晓.第四代同步辐射光源加速器物理与技术[J].物理, 2024, 53(2):71-79.
[16] Sajaev V. Commissioning simulations for the Argonne advanced photon source upgrade lattice[J]. Physical Review Accelerators and Beams, 2019, 22(4):040102.
[17] Emery L, Borland M. Possible long-term improvements to the advanced photon source[C]//Proceedings of the 2003 Bipolar/BiCMOS Circuits and Technology Meeting (IEEE Cat. No. 03CH37440). Portland:IEEE, 2003:256-258.
[18] Aiba M, Böge M, Marcellini F, et al. Longitudinal injection scheme using short pulse kicker for small aperture electron storage rings[J]. Physical Review Special Topics-Accelerators and Beams, 2015, 18(2):020701.
[19] Le Bec G, Chavanne J, Liuzzo S, et al. Cross talks between storage ring magnets at the Extremely Brilliant Source at the European Synchrotron Radiation Facility[J]. Physical Review Accelerators and Beams, 2021, 24(7):072401.
[20] Nagaoka R, Bane K L F. Collective effects in a diffractionlimited storage ring[J]. Journal of Synchrotron Radiation, 2014, 21(5):937-960.
[21] Tavares P F, Al-Dmour E, Andersson Å, et al. Commissioning and first-year operational results of the MAX IV 3 GeV ring[J]. Journal of Synchrotron Radiation, 2018, 25(5):1291- 1316.
[21] Liu L, Milas N, Mukai A H C, et al. The Sirius project[J]. Journal of Synchrotron Radiation, 2014, 21(5):904-911.
[23] Lin L, Alves M, Oliveira A C, et al. Sirius Commissioning results and operation status[EB/OL].[2021-05-01] . https://accelconf.web.cern.ch/ipac2021/papers/moxa03.pdf.
[24] Raimondi P, Benabderrahmane C, Berkvens P, et al. The extremely brilliant source storage ring of the European synchrotron radiation facility[J]. Communications Physics, 2023, 6(1):82.
[25] Raimondi P, Carmignani N, Carver L R, et al. Commissioning of the hybrid multibend achromat lattice at the European Synchrotron Radiation Facility[J]. Physical Review Accelerators and Beams, 2021, 24(11):110701.
[26] Borland M, Berenc T, Lindberg R, et al. Lower emittance lattice for the advanced photon source upgrade using reverse bending magnets[C]//Proceedings of the 2nd North American Particle Accelerator Conference (NAPAC2016). Chicago, 2016.
[27] Peoples-Evans E. Status and first results of the APSU[R/OL].[2021-05-01] . https://accelconf.web.cern.ch/ipac 2024/pdf/TUZN2_talk.pdf.
[28] 焦毅,潘卫民.高能同步辐射光源[J].强激光与粒子束, 2022, 34(10):220080.
[29] 潘卫民,李京祎,焦毅.高能同步辐射光源建设进展[J].科学通报, 2025, 70(1):60-69.
[30] Conroy G. World's brightest X-rays:China first in Asia to build next-generation synchrotron[J].Nature,2024,629(8013):740.
[31] Stone R. China poised to turn on one of world's most powerful sources of X-ray light[R/OL].(2024-11-22)[2024-11-22] . https://www.science.org/content/article/china-poised-turnone-world-s-most-powerful-sources-x-ray-light.
[32] Jiao Y. Latest physics design of the HEPS accelerator[J]. Radiation Detection Technology and Methods, 2020, 4(4):399.
[33] 孟才,曹建社,何大勇,等.高能同步辐射光源直线加速器初期调束取得重要进展[J].强激光与粒子束, 2023, 35(5):230061.
[34] Peng Y M, Cao J S, Chen J H, et al. Milestone progress of the HEPS booster commissioning[J]. Nuclear Science and Techniques, 2024, 35(1):16.
[35] Xu H S, Cui X H, Duan Z, et al. First beam storage in the High Energy Photon Source storage ring[J/OL]. Radiation Detection Technology and Methods, 2025[2025-02-14] . https://doi.org/10.1007/s41605-024-00518-0.
[36] Jiao Y, Chen F S, He P, et al. Modification and optimization of the storage ring lattice of the High Energy Photon Source[J]. Radiation Detection Technology and Methods, 2020, 4(4):415-424.
[37] Xu H S, Meng C, Peng Y M, et al. Equilibrium electron beam parameters of the high energy photon source[J]. Radia-tion Detection Technology and Methods, 2023, 7(2):279- 287.
[38] Duan Z, Chen J, Guo Y, et al. The swap-out injection scheme for the High Energy Photon Source[C]//Proceedings of the 9th International Particle Accelerat Conference. Vancouver, 2018.
Outlines

/