Special to S & T Review

Review of the frontiers and hot topics of nuclear physics in 2024

  • Yugang MA , 1, 2 ,
  • Simin WANG 1, 2
Expand
  • 1. Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Institute of Modern Physics, Fudan University, Shanghai 200433, China
  • 2. Shanghai Research Center for Theoretical Nuclear Physics, NSFC and Fudan University, Shanghai 200438, China

Received date: 2025-01-22

  Online published: 2025-05-13

Copyright

All rights reserved. Unauthorized reproduction is prohibited.

Cite this article

Yugang MA , Simin WANG . Review of the frontiers and hot topics of nuclear physics in 2024[J]. Science & Technology Review, 2025 , 43(7) : 21 -47 . DOI: 10.3981/j.issn.1000-7857.2025.01.00105

1
Thoennessen M, Gade A. Isotope facilities aim to complete the nuclear chart[J]. Nature Physics, 2024, 20(12): 18441845.

2
Physics Magazine Editors. Highlights of the year[EB/OL]. (2024-12-16)[2025-01-22]. https://physics.aps.org/articles/v17/181.

3
Ye Y L, Yang X F, Sakurai H, et al. Physics of exotic nuclei[J]. Nature Reviews Physics, 2025, 7(1): 21- 37.

4
Wei K, Ye Y L, Yang Z H. Clustering in nuclei: Progress and perspectives[J]. Nuclear Science and Techniques, 2024, 35(12): 216.

DOI

5
Ding M Q, Fang D Q, Ma Y G. Neutron skin and its effects in heavy-ion collisions[J]. Nuclear Science and Techniques, 2024, 35(12): 211.

DOI

6
Luo T P, Yang L, Lin C J, et al. Reaction dynamics of protonrich nuclei at energies around the Coulomb barrier: The cases of ${ }^{7} \mathrm{Be}, { }^{8} \mathrm{B}$, and ${ }^{17} \mathrm{F}$[J]. Nuclear Science and Techniques, 2024, 35(12): 212.

DOI

7
Chen Y, Ye Y, Wei K. Progress and perspective of the research on exotic structures of unstable nuclei[J]. Nuclear Techniques, 2023, 46(8): 189- 194.

8
Fang D Q. Neutron skin thickness and its effects in nuclear reactions[J]. Nuclear Techniques, 2023, 46(8): 155- 161.

9
Yang L, Lin C J, Jia H M, et al. Progress on nuclear reactions and related nuclear structure at low energies[J]. Nuclear Techniques, 2023, 46(8): 70- 80.

10
Yang H B, Gan Z G, Li Y J, et al. Discovery of new isotopes ${ }^{160} \mathrm{Os}$ and ${ }^{156} \mathrm{W}$ : Revealing enhanced stability of the $N=82$ shell closure on the neutron-deficient side[J]. Physical Review Letters, 2024, 132(7): 072502.

DOI

11
Ge Z, Reponen M, Eronen T, et al. High-precision mass measurements of neutron deficient silver isotopes probe the robustness of the $N=50$ Shell closure[J]. Physical Review Letters, 2024, 133(13): 132503.

DOI

12
Xu X Y, Fan S Q, Yuan Q, et al. Progress in $a b$ initio inmedium similarity renormalization group and coupled-channel method with coupling to the continuum[J]. Nuclear Science and Techniques, 2024, 35(12): 215.

DOI

13
Warbinek J, Rickert E, Raeder S, et al. Smooth trends in fermium charge radii and the impact of shell effects[J]. Nature, 2024, 634(8036): 1075- 1079.

DOI

14
Heinz S. A route toward the island of stability[EB/OL]. (2024-10-21) [2025-01-22]. https://physics.aps.org/articles/v17/150.

15
Gates J M, Orford R, Rudolph D, et al. Toward the discovery of new elements: Production of livermorium (Z=116) with ${ }^{50} \mathrm{Ti}$[J]. Physical Review Letters, 2024, 133(17): 172502.

DOI

16
Wright K. Five new isotopes is just the beginning[EB/OL]. (2024-02-15) [2025-01-22]. https://physics.aps.org/articles/v17/28.

17
Tarasov O B, Gade A, Fukushima K, et al. Observation of new isotopes in the fragmentation of ${ }^{198} \mathrm{Pt}$ at FRIB[J]. Physical Review Letters, 2024, 132(7): 072501.

DOI

18
Xu F F, Wang Y K, Wang Y P, et al. Emergence of highorder deformation in rotating transfermium nuclei: A microscopic understanding[J]. Physical Review Letters, 2024, 133(2): 022501.

DOI

19
Sun X X, Zhou S G. Deformed halo nuclei and shape decoupling effects[J]. Nuclear Techniques, 2023, 46(8): 146- 154.

20
Frauendorf S. First evidence for chiral wobbling of triaxial nuclei[J]. Nuclear Science and Techniques, 2024, 35(7): 123.

DOI

21
Guo R J, Wang S Y, Liu C, et al. Evidence for chiral wobbler in nuclei[J]. Physical Review Letters, 2024, 132(9): 092501.

DOI

22
Kawabata T. The $5\alpha$ condensate state in ${ }^{20} \mathrm{Ne}$[J]. Nuclear Science and Techniques, 2024, 35(2): 35.

DOI

23
Li J G, Hu B S, Zhang S, et al. Unbound ${ }^{28} \mathrm{O}$, the heaviest oxygen isotope observed: A cutting-edge probe for testing nuclear models[J]. Nuclear Science and Techniques, 2024, 35(2): 21.

DOI

24
Chen J, Ayyad Y, Bazin D, et al. Near-threshold dipole strength in ${ }^{10} \mathrm{Be}$ with isoscalar character[J]. Physical Review Letters, 2025, 134: 012502.

DOI

25
Day C. A toroidal mode in an excited nucleus[EB/OL]. (2024-12-04) [2025-01-22]. https://physics.aps.org/articles/v17/s146.

26
von Neumann-Cosel P, Nesterenko V O, Brandherm I, et al. Candidate toroidal electric dipole mode in the spherical nucleus ${ }^{58} \mathrm{Ni}$[J]. Physical Review Letters, 2024, 133(23): 232502.

DOI

27
Xu Z Y, Grzywacz R, Gottardo A, et al. Compound-nucleus and doorway-state decays of $\beta$-delayed neutron emitters ${ }^{51, 52, 53} \mathrm{K}$[J]. Physical Review Letters, 2024, 133(4): 042501.

DOI

28
Monteagudo B, Marques F M, Gibelin J, et al. Mass, spectroscopy, and two-eutron decay of ${ }^{16} \mathrm{Be}$[J]. Physical Review Letters, 2024, 132(8): 082501.

DOI

29
Wang J X, Penny T W, Recoaro J, et al. Mechanical detection of nuclear decays[J]. Physical Review Letters, 2024, 133(2): 023602.

DOI

30
Northup T. Nuclear decay detected in the recoil of a levitating bead[EB/OL]. (2024-07-08)[2025-01-22]. https://physics.aps.org/articles/v17/107.

31
Le Joubioux M, Savajols H, Mittig W, et al. Search for a neutron dark decay in ${ }^{6} \mathrm{He}$[J]. Physical Review Letters, 2024, 132(13): 132501.

DOI

32
Campbell S E, Bollen G, Brown B A, et al. Precision mass measurement of the proton dripline halo candidate ${ }^{22} \mathrm{Al}$[J]. Physical Review Letters, 2024, 132(15): 152501.

DOI

33
Zhou X, Wang M, Zhang Y H, et al. B $\rho$-defined isochronous mass spectrometry at the storage ring CSRe[J]. Nuclear Science and Techniques, 2024, 35(12): 213.

DOI

34
Yu Y, Xing Y M, Zhang Y H, et al. Nuclear structure of dripline nuclei elucidated through precision mass measurements of ${ }^{23} \mathrm{Si}, { }^{26} \mathrm{P}, { }^{27, 28} \mathrm{S}$, and ${ }^{31}\mathrm{Ar}$[J]. Physical Review Letters, 2024, 133(22): 222501.

DOI

35
Wang M, Zhang Y H, Zhou X, et al. Mass measurement of upper $f p$-shell $N=Z-2$ and $N=Z-1$ nuclei and the importance of three-nucleon force along the $N=Z$ line[J]. Physical Review Letters, 2023, 130(19): 192501.

DOI

36
Wang Y P, Wang Y K, Xu F F, et al. Abnormal bifurcation of the double binding energy differences and proton-neutron pairing: Nuclei close to $N=Z$ line from Ni to Rb[J]. Physical Review Letters, 2024, 132(23): 232501.

DOI

37
König K, Berengut J C, Borschevsky A, et al. Erratum: Nuclear charge radii of silicon isotopes[J]. Physical Review Letters, 2024, 133(5): 059901.

DOI

38
König K, Berengut J C, Borschevsky A, et al. Nuclear charge radii of silicon isotopes[J]. Physical Review Letters, 2024, 132(16): 162502.

DOI

39
Jungclaus A, Górska M, Mikołajczuk M, et al. Excited-state half-lives in ${ }^{130} \mathrm{Cd}$ and the isospin dependence of effective charges[J]. Physical Review Letters, 2024, 132(22): 222501.

DOI

40
Ehrenstein D. Proton effective charge depends on neutron population[EB/OL]. (2024-05-29)[2025-01-22]. https://physics.aps.org/articles/v17/s65.

41
Chen J H, Dong X, He X H, et al. Properties of the QCD matter: Review of selected results from the relativistic heavy ion collider beam energy scan (RHIC BES) program[J]. Nuclear Science and Techniques, 2024, 35(12): 214.

DOI

42
Shou Q Y, Ma Y G, Zhang S, et al. Properties of QCD matter: A review of selected results from ALICE experiment[J]. Nuclear Science and Techniques, 2024, 35(12): 219.

DOI

43
Zhang Y, Zhang D W, Luo X F. Experimental study of the QCD phase diagram in relativistic heavy-ion collisions[J]. Nuclear Techniques, 2023, 46(4): 040001.

44
Sun K J, Chen L W, Ming K C, et al. Light nuclei production and QCD phase transition in heavy-ion collisions[J]. Nuclear Techniques, 2023, 46(4): 040012.

45
Chen Q, Ma G L, Chen J H. Transport model study of conserved charge fluctuations and qcd phase transition in heavy-ion collisions[J]. Nuclear Techniques, 2023, 46(8): 080013.

46
Yang Z, He Y Y, Moult I, et al. Probing the short-distance structure of the quark-gluon plasma with energy correlators[J]. Physical Review Letters, 2024, 132: 011901.

DOI

47
Hayrapetyan A, Tumasyan A, Adam W, et al. Measurement of energy correlators inside jets and determination of the strong coupling $\alpha_s\left(m_z\right)$[J]. Physical Review Letters, 2024, 133(7): 071903.

DOI

48
Deng X G, Fang D Q, Ma Y G. Shear viscosity of nucleonic matter[J]. Progress in Particle and Nuclear Physics, 2024, 136: 104095.

DOI

49
Shen C, Schenke B, Zhao W B. Viscosities of the baryonrich quark-gluon plasma from beam energy scan data[J]. Physical Review Letters, 2024, 132(7): 072301.

DOI

50
Heffernan M, Gale C, Jeon S, et al. Early-times Yang-Mills dynamics and the characterization of strongly interacting matter with statistical learning[J]. Physical Review Letters, 2024, 132(25): 252301.

DOI

51
Hayrapetyan A, Tumasyan A, Adam W, et al. Search for soft unclustered energy patterns in proton-proton collisions at 13 TeV[J]. Physical Review Letters, 2024, 133(19): 191902.

DOI

52
Karthik N. Searching for dark matter vari ants of quarks and gluons[EB/OL]. (2024-11-05)[2025-01-22]. https://physics.aps.org/articles/v17/s137.

53
Wu W H, Tao J Q, Zheng H, et al. Thermodynamic properties at the kinetic freeze-out in the $\mathrm{Au}+\mathrm{Au}$ and $\mathrm{Cu}+\mathrm{Cu}$ collisions at the RHIC using the Tsallis distribution[J]. Nuclear Science and Techniques, 2023, 34(10): 151.

DOI

54
Bleicher M. Nucleosynthesis in the little Bang[J]. Nuclear Science and Techniques, 2024, 35(8): 129.

DOI

55
Churchill J, Du L P, Gale C, et al. Virtual photons shed light on the early temperature of dense QCD matter[J]. Physical Review Letters, 2024, 132(17): 172301.

DOI

56
Sun K J, Wang R, Ko C M, et al. Unveiling the dynamics of little-Bang nucleosynthesis[J]. Nature Communications, 2024, 15(1): 1074.

DOI

57
ALICE Collaboration. Observation of medium-induced yield enhancement and acoplanarity broadening of low-pT jets from measurements in $p p$ and central $\mathrm{Pb}-\mathrm{Pb}$ collisions at $\sqrt{S_{N N}}=5.02\text{ }\mathrm{TeV}$[J]. Physical Review Letters, 2024, 133(2): 022301.

DOI

58
Sun K J, Liu D N, Zheng Y P, et al. Deciphering hypertriton and antihypertriton spins from their global polarizations in heavy-ion collisions[J]. Physical Review Letters, 2025, 134(2): 022301.

DOI

59
Liang Z T, Wang X N. Globally polarized quark-gluon plasma in noncentral $A+A$ collisions[J]. Physical Review Letters, 2005, 94(10): 102301.

DOI

60
Liang Z T, Wang X N. Erratum: Globally polarized quarkgluon plasma in noncentral $A+A$ collisions[J]. Physical Review Letters, 2006, 96(3): 039901.

DOI

61
Liang Z T, Wang X N. Spin alignment of vector mesons in non-central $A+A$ collisions[J]. Physics Letters B, 2005, 629(1): 20- 26.

DOI

62
Sheng X L, Oliva L, Liang Z T, et al. Spin alignment of vector mesons in heavy-ion collisions[J]. Physical Review Letters, 2023, 131(4): 042304.

DOI

63
Gao J H, Huang X G, Liang Z T, et al. Spin-orbital coupling in strong interaction and global spin polarization[J]. Acta Physica Sinica, 2023, 72(7): 072501.

DOI

64
Sheng X L, Liang Z T, Wang Q. Global spin alignment of vector mesons in heavy ion collisions[J]. Acta Physica Sinica, 2023, 72(7): 072502.

DOI

65
The STAR Collaboration. Global $\Lambda$ hyperon polarization in nuclear collisions[J]. Nature, 2017, 548(7665): 62- 65.

DOI

66
The STAR Collaboration. Pattern of global spin alignment of $\phi$ and $\mathrm{K}^{* 0}$ mesons in heavy-ion collisions[J]. Nature, 2023, 614(7947): 244- 248.

DOI

67
Chen J H, Liang Z T, Ma Y G, et al. Global spin alignment of vector mesons and strong force fields in heavy-ion collisions[J]. Science Bulletin, 2023, 68(9): 874- 877.

DOI

68
Chen J H, Liang Z T, Ma Y G, et al. Vector meson's spin alignments in high energy reactions[J]. Science China Physics, Mechanics & Astronomy, 2024, 68(1): 211001.

69
Ma Y G. Research advances in antimatter[J]. Acta Physica Sinica, 2024, 73(19): 191101.

70
The STAR Collaboration. Observation of the antimatter hypernucleus Λ-4H-[J]. Nature, 2024, 632(8027): 1026. [J]. Nature, 2011, 475(7356): 412.

71
Zhao J, Chen J H, Huang X G, et al. Electromagnetic fields in ultra-peripheral relativistic heavy-ion collisions[J]. Nuclear Science and Techniques, 2024, 35(2): 20.

72
Huang X G. Quantifying the strength of magnetic fields using baryon electric charge correlation[J]. Nuclear Science and Techniques, 2024, 35(8): 138.

73
The STAR Collaboration. Observation of the electromagnetic field effect via charge-dependent directed flow in heavy-ion collisions at the relativistic heavy ion collider[J]. Physical Review X, 2024, 14(1): 011028.

74
Ding H T, Gu J B, Kumar A, et al. Baryon electric charge correlation as a magnetometer of QCD[J]. Physical Review Letters, 2024, 132(20): 201903.

75
Ma Y G, Zhang S. Influence of nuclear structure in relativistic heavy-ion collisions[M] //Handbook of Nuclear Physics. Singapore: Springer Nature Singapore, 2023: 1485-1514.

76
Ma Y G, Zhang S. $\alpha$-clustering effects in relativistic heavyion collisions[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2024, 54(9): 292004.

77
Ma Y G. Effects of $\alpha$-clustering structure on nuclear reaction and relativistic heavy-ion collisions[J]. Nuclear Techniques, 2023, 46(8): 8- 29.

78
Schenke B. Violent collisions can reveal hexadecapole deformation of nuclei[J]. Nuclear Science and Techniques, 2024, 35(7): 115.

79
Jia J Y, Giacalone G, Bally B, et al. Imaging the initial condition of heavy-ion collisions and nuclear structure across the nuclide chart[J]. Nuclear Science and Techniques, 2024, 35(12): 220.

80
The STAR Collaboration. Imaging shapes of atomic nuclei in high-energy nuclear collisions[J]. Nature, 2024, 635(8037): 67- 72.

81
Xu H J, Zhao J, Wang F Q. Hexadecapole deformation of ${ }^{238} \mathrm{U}$ from relativistic heavy-ion collisions using a nonlinear response coefficient[J]. Physical Review Letters, 2024, 132(26): 262301.

82
Zhao S J, Xu H J, Zhou Y, et al. Exploring the nuclear-shape phase transition in ultrarelativistic ${ }^{129} \mathrm{Xe}+{ }^{129} \mathrm{Xe}$ collisions at the LHC[J]. Physical Review Letters, 2024, 133(19): 192301.

83
Giacalone G. Beyond axial symmetry: High-energy collisions unveil the ground-state shape of ${ }^{238} \mathrm{U}$[J]. Nuclear Science and Techniques, 2024, 35(12): 218.

84
Ma L, Huang H Z, Ma Y G. Sensitivity challenge of the next-generation bolometric double-beta decay experiment[J]. Research, 2024, 7: 569.

85
Yan X Y, Cheng Z K, Abdukerim A, et al. Searching for two-neutrino and neutrinoless double beta decay of ${ }^{134} \mathrm{Xe}$ with the PandaX-4T experiment[J]. Physical Review Letters, 2024, 132(15): 152502.

86
Bo Z H, Chen W, Chen X, et al. First indication of solar ${ }^{8}\mathrm{B}$ neutrinos through coherent elastic neutrino-nucleus scatter-ing in PandaX-4T[J]. Physical Review Letters, 2024, 133(19): 191001.

87
Adams D Q, Alduino C, Alfonso K, et al. Search for fractionally charged particles with CUORE[J]. Physical Review Letters, 2024, 133(24): 241801.

88
Wang W, Wang X. Substantial nuclear hyperfine mixing effect in boronlike ${ }^{205} \mathrm{Pb}$ Ions[J]. Physical Review Letters, 2024, 133(3): 032501.

89
Ji C, Zhang X, Platter L. Nuclear structure effects on hyperfine splittings in ordinary and muonic deuterium[J]. Physical Review Letters, 2024, 133(4): 042502.

90
Zhang H X, Li T, Wang X. Highly nonlinear light-nucleus interaction[J]. Physical Review Letters, 2024, 133(15): 152503.

91
Loetzsch R, Beyer H F, Duval L, et al. Testing quantum electrodynamics in extreme fields using helium-like uranium[J]. Nature, 2024, 625(7996): 673- 678.

92
Kong X J, Chang Y, Zhang L D, et al. Multiphoton emission of x-rays from cooperative resonant nuclei[J]. Physical Review Research, 2025, 7(1): 013030.

93
Dickopf S, Sikora B, Kaiser A, et al. Precision spectroscopy on ${ }^{9} \mathrm{Be}$ overcomes limitations from nuclear structure[J]. Nature, 2024, 632(8026): 757- 761.

94
Bennett J. Breakthrough promises new era of ultraprecise nuclear clocks[J]. Science, 2024, 385(6713): 1031- 1032.

95
Gibney E, Thompson B. Long-sought "nuclear clocks" are one tick closer[EB/OL]. (2024-09-04)[2025-01-22]. https://www.nature.com/articles/d41586-024-02859-8.

96
Thirolf P. Shedding light on the Thorium-229 nuclear clock isomer[EB/OL]. (2024-04-29)[2025-01-22]. https://physics.aps.org/articles/v17/71.

97
Tiedau J, Okhapkin M V, Zhang K, et al. Laser excitation of the Th-229 nucleus[J]. Physical Review Letters, 2024, 132(18): 182501.

98
Zhang C K, Ooi T, Higgins J S, et al. Frequency ratio of the ${ }^{229\mathrm{m}} \mathrm{Th}$ nuclear isomeric transition and the ${ }^{87} \mathrm{Sr}$ atomic clock[J]. Nature, 2024, 633(8028): 63- 70.

99
Yamaguchi A, Shigekawa Y, Haba H, et al. Laser spectroscopy of triply charged ${ }^{229} \mathrm{Th}$ isomer for a nuclear clock[J]. Nature, 2024, 629(8010): 62- 66.

100
Pang L G, Wang X N. Bayesian analysis of nuclear equation of state at high baryon density[J]. Nuclear Science and Techniques, 2023, 34(12): 194.

101
Elhatisari S, Bovermann L, Ma Y Z, et al. Wavefunction matching for solving quantum many-body problems[J]. Nature, 2024, 630(8015): 59- 63.

102
Ma Y Z, Lin Z D, Lu B N, et al. Structure factors for hot neutron matter from $A b$ Initio Lattice simulations with high-fidelity chiral interactions[J]. Physical Review Letters, 2024, 132(23): 232502.

103
Roederer I U, Vassh N, Holmbeck E M, et al. Element abundance patterns in stars indicate fission of nuclei heavier than uranium[J]. Science, 2023, 382(6675): 1177- 1180.

104
Wright K. Lanthanum less abundant than previously thought[EB/OL]. (2024-05-17)[2025-01-22]. https://physics.aps.org/articles/v17/78.

105
Spyrou A, Mücher D, Denissenkov P A, et al. First study of the ${ }^{139} \mathrm{Ba}(n, \gamma){ }^{140} \mathrm{Ba}$ reaction to constrain the conditions for the astrophysical $i$ process[J]. Physical Review Letters, 2024, 132(20): 202701.

106
Liu W P, Guo B, An Z, et al. Recent progress in nuclear astrophysics research and its astrophysical implications at the China Institute of Atomic Energy[J]. Nuclear Science and Techniques, 2024, 35(12): 217.

107
Li J Y H, Li Y J, Li Z H, et al. Nuclear astrophysics research based on HI-13 tandem accelerator[J]. Nuclear Techniques, 2023, 46(8): 30- 42.

108
de Boer R J, Febbraro M, Bardayan D W, et al. Measurement of the ${ }^{13} \mathrm{C}(\alpha, n){ }^{16} \mathrm{O}$ differential cross section from 0.8 to $6.5 \text{ }\mathrm{ MeV}$[J]. Physical Review Letters, 2021, 132(6): 062702.

109
Hammache F, Adsley P, Lamia L, et al. Experimental determination of $\alpha$ widths of ${ }^{21} \mathrm{Ne}$ levels in the region of astrophysical interest: New ${ }^{17} \mathrm{O}+\alpha$ reaction rates and impact on the weak $s$ process[J]. Physical Review Letters, 2024, 132(18): 182701.

110
Xiong Z W, Martínez-Pinedo G, Just O, et al. Production of $p$ nuclei from $r$-process seeds: The $v r$ process[J]. Physical Review Letters, 2024, 132(19): 192701.

111
Day C. Making neutron-deficient nuclei[EB/OL]. (2024-05-09)[2025-01-22]. https://physics.aps.org/articles/v17/s56.

112
Leckenby G, Sidhu R S, Chen R J, et al. High-temperature ${ }^{205} \mathrm{Tl}$ decay clarifies ${ }^{205} \mathrm{Pb}$ dating in early Solar System[J]. Nature, 2024, 635(8038): 321- 326.

113
Sidhu R S, Leckenby G, J Chen R, et al. Bound-state beta decay of ${ }^{205} \mathrm{Tl}^{81+}$ ions and the LOREX project[J]. Physical Review Letters, 2024, 133(23): 232701.

114
Vozenin M C, Loo B W, Tantawi S, et al. FLASH: New intersection of physics, chemistry, biology, and cancer medicine[J]. Reviews of Modern Physics, 2024, 96(3): 035002.

115
Moskal P. Positron emission tomography could be aided by entanglement[EB/OL]. (2024-09-25)[2025-01-22]. https://physics.aps.org/articles/v17/138.

116
Bordes J, Brown J R, Watts D P, et al. First detailed study of the quantum decoherence of entangled gamma photons[J]. Physical Review Letters, 2024, 133(13): 132502.

Outlines

/