Special to S & T Review

On the study of life phenomena and laws in extreme extraterrestrial analogue environments

  • Yinghui LI , 1 ,
  • Guangjun HE 1 ,
  • Shuai DING 2, 3 ,
  • Chao YANG 1
Expand
  • 1. State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China
  • 2. School of Management, Hefei University of Technology, Hefei 230009, China
  • 3. Key Laboratory of Process Optimization and Intelligent Decision−making, Ministry of Education, Hefei 230009, China

Received date: 2024-04-12

  Online published: 2025-06-05

Copyright

All rights reserved. Unauthorized reproduction is prohibited.

Cite this article

Yinghui LI , Guangjun HE , Shuai DING , Chao YANG . On the study of life phenomena and laws in extreme extraterrestrial analogue environments[J]. Science & Technology Review, 2025 , 43(8) : 27 -37 . DOI: 10.3981/j.issn.1000-7857.2024.04.00378

在本文撰写过程中,中国科学院国家空间科学中心研究员、中国科学院院士王赤提出了宝贵建议。

1
Wu Y . China's deep space exploration[J]. Aerospace China, 2023, 24 (1): 3- 9.

DOI

2
林仁红, 丁洁, 林志伟, 等. 2022年全球深空探测领域发展综述[J]. 国际太空, 2023 (3): 26- 30.

3
白青江, 时蓬, 宋婷婷, 等. 2023年空间科学与深空探测热点回眸[J]. 科技导报, 2024, 42 (1): 87- 98.

DOI

4
顾逸东. 关于空间科学发展的一些思考[J]. 中国科学院院刊, 2022, 37 (8): 1031- 1049.

5
吴伟仁, 王赤, 刘洋, 等. 深空探测之前沿科学问题探析[J]. 科学通报, 2023, 68 (6): 606- 627.

6
周建平, 吴季. 统筹空间科学、空间技术、空间应用协调发展的思考[J]. 中国工程科学, 2023, 25 (2): 59- 66.

7
王赤. 空间科学突破的前瞻和中国的贡献[J]. 中国科学院院刊, 2022, 37 (8): 1050- 1065.

8
Joseph Seckbach H S-L . Extremophiles as astrobiological models[M]. Beverly MA: Scrivener Publishing, 2020.

9
杨孟飞, 郑燕红, 倪彦硕, 等. 太阳系内行星探测活动进展与展望[J]. 中国空间科学技术, 2023, 43 (5): 1- 12.

10
张荣桥, 耿言, 孙泽洲, 等. 天问一号任务的技术创新[J]. 航空学报, 2022, 43 (3): 9- 15.

11
Ehlmann B L , Mustard J F , Murchie S L , et al. Subsurface water and clay mineral formation during the early history of Mars[J]. Nature, 2011, 479 (7371): 53- 60.

DOI

12
Mahaffy P R , Webster C R , Atreya S K , et al. Abundance and isotopic composition of gases in the martian atmosphere from the curiosity rover[J]. Science, 2013, 341 (6143): 263- 266.

DOI

13
Squyres S W , Grotzinger J P , Arvidson R E , et al. In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars[J]. Science, 2004, 306 (5702): 1709- 1714.

DOI

14
Martin-Torres F J , Zorzano M-P , Valentin-Serrano P , et al. Transient liquid water and water activity at Gale crater on Mars[J]. Nature Geoscience, 2015, 8 (5): 357- 361.

DOI

15
Dundas C M , Bramson A M , Ojha L , et al. Exposed subsurface ice sheets in the Martian mid-latitudes[J]. Science, 2018, 359 (6372): 199- 201.

DOI

16
Eigenbrode J L , Summons R E , Steele A , et al. Organic matter preserved in 3-billion-year-old mudstones at Gale crater, Mars[J]. Science, 2018, 360 (6393): 1096- 1100.

DOI

17
Webster C R , Mahaffy P R , Atreya S K , et al. Background levels of methane in Mars' atmosphere show strong seasonal variations[J]. Science, 2018, 360 (6393): 1093- 1096.

DOI

18
Squyres S W , Arvidson R E , Ruff S , et al. Detection of silica-rich deposits on Mars[J]. Science, 2008, 320 (5879): 1063- 1067.

DOI

19
赵玉芬, 刘艳, 黄碧玲, 等. 火星生命探测中一种潜在的生物标志物磷酸盐[J]. 空间科学学报, 2021, 41 (1): 129- 132.

20
Hendrix A R , Hurford T A , Barge L M , et al. The NASA roadmap to ocean worlds[J]. Astrobiology, 2019, 19 (1): 1- 27.

DOI

21
Cockell C S , Bush T , Bryce C , et al. Habitability: A review[J]. Astrobiology, 2016, 16 (1): 89- 117.

DOI

22
Waite J H , Combi M R , Ip W H , et al. Cassini ion and neutral mass spectrometer: Enceladus plume composition and structure[J]. Science, 2006, 311 (5766): 1419- 1422.

DOI

23
Postberg F , Schmidt J , Hillier J , et al. A salt-water reservoir as the source of a compositionally stratified plume on Enceladus[J]. Nature, 2011, 474 (7353): 620- 622.

DOI

24
Hsu H-W , Postberg F , Sekine Y , et al. Ongoing hydrothermal activities within Enceladus[J]. Nature, 2015, 519 (7542): 207- 210.

DOI

25
Postberg F , Khawaja N , Abel B , et al. Macromolecular organic compounds from the depths of Enceladus[J]. Nature, 2018, 558 (7711): 564- 568.

DOI

26
Deamer D , Damer B . Can life begin on enceladus? A perspective from hydrothermal chemistry[J]. Astrobiology, 2017, 17 (9): 834- 839.

DOI

27
Sekine Y , Shibuya T , Postberg F , et al. High-temperature water-rock interactions and hydrothermal environments in the chondrite-like core of Enceladus[J]. Nature Communications, 2015, 6: 8604.

DOI

28
Russell M J , Murray A E , Hand K P . The possible emergence of life and differentiation of a shallow biosphere on irradiated icy worlds: The example of Europa[J]. Astrobiology, 2017, 17 (12): 1265- 1273.

DOI

29
Waite J H , Niemann H , Yelle R V , et al. Ion Neutral Mass Spectrometer results from the first flyby of Titan[J]. Science, 2005, 308 (5724): 982- 986.

DOI

30
Stevenson J , Lunine J , Clancy P . Membrane alternatives in worlds without oxygen: Creation of an azotosome[J]. Science Advances, 2015, 1 (1): e1400067.

DOI

31
国家自然科学基金委员会, 中国科学院. 极端地质环境微生物学[M]. 北京: 科学出版社, 2022.

32
林巍. 临近空间生物研究及其天体生物学意义[J]. 科学通报, 2020, 65 (14): 1297- 1304.

33
Martins Z , Cottin H , Kotler J M , et al. Earth as a tool for astrobiology: A European perspective[J]. Space Science Reviews, 2017, 209 (1/2/3/4): 43- 81.

34
Rothschild L J , Mancinelli R L . Life in extreme environments[J]. Nature, 2001, 409 (6823): 1092- 1101.

DOI

35
Shu W-S , Huang L-N . Microbial diversity in extreme environments[J]. Nature Reviews Microbiology, 2022, 20 (4): 219- 235.

DOI

36
Junge K , Eicken H , Deming J W . Bacterial activity at -2 to -20 ℃ in Arctic wintertime sea ice[J]. Appl Environ Microbiol, 2004, 70 (1): 550- 557.

DOI

37
Cary S C , McDonald I R , Barrett J E , et al. On the rocks: The microbiology of Antarctic Dry Valley soils[J]. Nature Reviews Microbiology, 2010, 8 (2): 129- 138.

DOI

38
Merino N , Aronson H S , Bojanova D P , et al. Living at the extremes: Extremophiles and the limits of life in a planetary context[J]. Frontiers in Microbiology, 2019, 10: 780.

DOI

39
Rappaport H B , Oliverio A M . Extreme environments offer an unprecedented opportunity to understand microbial eukaryotic ecology, evolution, and genome biology[J]. Nature Communications, 2023, 14 (1): 4959.

DOI

40
von Hegner I . Extremophiles: A special or general case in the search for extra-terrestrial life[J]. Extremophiles, 2020, 24 (1): 167- 175.

DOI

41
Ando N, Barquera B, Bartlett D H, et al. The molecular basis for life in extreme environments[C]//Dill K A. Annual review of biophysics, 2021(50): 343-372.

42
Santomartino R , Averesch N J H , Bhuiyan M , et al. Toward sustainable space exploration: A roadmap for harnessing the power of microorganisms[J]. Nature Communications, 2023, 14 (1): 1391.

DOI

43
Corliss J B , Baross J A , Hoffman S E . An hypothesis concerning the relationship between submarine hot springs and the origin of life on Earth[J]. Oceanologica Acta, 1981, 4 (Suppl C4): 59- 69.

44
Chyba C , Sagan C . Endogenous production, exogenous delivery and impact-shock synthesis of organic-molecules: An inventory for the origins of life[J]. Nature, 1992, 355 (6356): 125- 132.

DOI

45
Holm N G , Andersson E M . Abiotic synthesis of organic-compounds under the conditions of submarine hydrothermal systems: A perspective[J]. Planetary and Space Science, 1995, 43 (1/2): 153- 159.

46
Lazcano A , Miller S L . The origin and early evolution of life: Prebiotic chemistry, the pre-RNA world, and time[J]. Cell, 1996, 85 (6): 793- 798.

DOI

47
Baross J A , Hoffman S E . Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life[J]. Origins of Life and Evolution of the Biosphere, 1985, 15 (4): 327- 345.

DOI

48
Gonzalez B C , Iliffe T M , Macalady J L , et al. Microbial hotspots in anchialine blue holes: Initial discoveries from the Bahamas[J]. Hydrobiologia, 2011, 677 (1): 149- 156.

DOI

49
Djokic T , Van Kranendonk M J , Campbell K A , et al. Earliest signs of life on land preserved in ca. 3.5 Ga hot spring deposits[J]. Nature Communications, 2017, 8: 15263.

DOI

50
Davila-Ramos S , Castelan-Sanchez H G , Martinez-Avila L , et al. A review on viral metagenomics in extreme environments[J]. Frontiers in Microbiology, 2019, 10: 2403.

DOI

51
Gil J F , Mesa V , Estrada-Ortiz N , et al. Viruses in extreme environments, current overview, and biotechnological potential[J]. Viruses-Basel, 2021, 13 (1): 81.

DOI

52
Rambo I M , Langwig M V , Leao P , et al. Genomes of six viruses that infect Asgard archaea from deep-sea sediments[J]. Nature Microbiology, 2022, 7 (7): 953- 961.

DOI

53
林巍, 李一良, 王高鸿, 等. 天体生物学研究进展和发展趋势[J]. 科学通报, 2020, 65 (5): 380- 391.

54
林巍, 申建勋, 潘永信. 关于我国天体生物学研究的思考[J]. 地球科学, 2022, 47 (11): 4108- 4113.

55
Angles A , Li Y . The western Qaidam Basin as a potential Martian environmental analogue: An overview[J]. Journal of Geophysical Research-Planets, 2017, 122 (5): 856- 888.

DOI

56
Xiao L , Wang J , Dang Y , et al. A new terrestrial analogue site for Mars research: The Qaidam Basin, Tibetan Plateau (NW China)[J]. Earth-Science Reviews, 2017, 164: 84- 101.

DOI

57
程子烨, 肖龙, 王红梅, 等. 柴达木盆地盐类沉积物中类脂物的分布特征及天体生物学意义[J]. 中国科学: 地球科学, 2022, 52 (2): 356- 369.

58
Smith D J . Microbes in the upper atmosphere and unique opportunities for astrobiology research[J]. Astrobiology, 2013, 13 (10): 981- 990.

DOI

59
DasSarma P , Antunes A , Simoes M F , et al. Earth's stratosphere and microbial life[J]. Current Issues in Molecular Biology, 2020, 38: 197- 244.

60
Lin W , He F , Zhang W , et al. Astrobiology at altitude in Earth's near space[J]. Nature Astronomy, 2022, 6 (2): 289- 289.

DOI

61
Wang Y , Jiang Y , Sun Z , et al. The Temperature-controlled biological samples exposure payload(TC-BIOSEP) for balloon-based astrobiology research[J]. Microgravity Science and Technology, 2023, 35 (1): 10.

DOI

62
Mohr S M , Bagriantsev S N , Gracheva E O . Cellular, molecular, and physiological adaptations of hibernation: The solution to environmental challenges[J]. Annual Review of Cell and Developmental Biology, 2020, 36: 315- 338.

DOI

63
戴钟铨, 李莹辉, 杨超, 等. 面向未来载人星际航行的空间低代谢调节技术[J]. 载人航天, 2021, 27 (3): 269- 275.

DOI

64
Shi Z , Qin M , Huang L , et al. Human torpor: Translating insights from nature into manned deep space expedition[J]. Biological Reviews of the Cambridge Philosophical Society, 2021, 96 (2): 642- 672.

DOI

65
Cerri M , Tinganelli W , Negrini M , et al. Hibernation for space travel: Impact on radioprotection[J]. Life Sciences in Space Research, 2016, 11: 1- 9.

DOI

66
Nordeen C A , Martin S L . Engineering Human Stasis for Long-Duration Spaceflight[J]. Physiology, 2019, 34 (2): 101- 111.

DOI

67
Nordeen C A , Martin S L . Engineering Human Stasis for Long-Duration Spaceflight[J]. Physiology, 2019, 34 (2): 101- 111.

DOI

68
Cerri M , Mastrotto M , Tupone D , et al. The inhibition of neurons in the central nervous pathways for thermoregulatory cold defense induces a suspended animation state in the rat[J]. Journal of Neuroscience, 2013, 33 (7): 2984- 2993.

DOI

69
Frerichs K U , Smith C B , Brenner M , et al. Suppression of protein synthesis in brain during hibernation involves inhibition of protein initiation and elongation[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95 (24): 14511- 14516.

70
Arendt T , Stieler J , Strijkstra A M , et al. Reversible paired helical filament-like phosphorylation of tau is an adaptive process associated with neuronal plasticity in hibernating animals[J]. Journal of Neuroscience, 2003, 23 (18): 6972- 6981.

DOI

71
Storey K B , Storey J M . Metabolic rate depression in animals: Transcriptional and translational controls[J]. Biological Reviews of the Cambridge Philosophical Society, 2004, 79 (1): 207- 233.

DOI

72
Storey K B . Out cold: Biochemical regulation of mammalian hibernation: A mini-review[J]. Gerontology, 2010, 56 (2): 220- 230.

DOI

73
Hrvatin S , Sun S , Wilcox O F , et al. Neurons that regulate mouse torpor[J]. Nature, 2020, 583 (7814): 115- 121.

DOI

74
Takahashi T M , Sunagawa G A , Soya S , et al. A discrete neuronal circuit induces a hibernation-like state in rodents[J]. Nature, 2020, 583 (7814): 109- 114.

DOI

75
Yang Y , Yuan J , Field R L , et al. Induction of a torpor-like hypothermic and hypometabolic state in rodents by ultrasound[J]. Nature Metabolism, 2023, 5 (5): 789- 803.

DOI

76
Dausmann K H , Glos J , Ganzhorn J U , et al. Physiology: Hibernation in a tropical primate—Even in the wound-down hibernating state, this lemur can warm up without waking up[J]. Nature, 2004, 429 (6994): 825- 826.

DOI

77
Blanco M B , Dausmann K H , Ranaivoarisoa J F , et al. Underground hibernation in a primate[J]. Scientific Reports, 2013, 3: 1768.

DOI

78
Wang Z , Ma J , Miyoshi C , et al. Quantitative phosphoproteomic analysis of the molecular substrates of sleep need[J]. Nature, 2018, 558 (7710): 435- 439.

DOI

79
Round J L , Mazmanian S K . The gut microbiota shapes intestinal immune responses during health and disease[J]. Nature Reviews Immunology, 2009, 9 (5): 313- 223.

DOI

80
Tremaroli V , Backhed F . Functional interactions between the gut microbiota and host metabolism[J]. Nature, 2012, 489 (7415): 242- 249.

DOI

81
Carey H V, Assadi-Porter F M. The hibernator microbiome: Host-bacterial interactions in an extreme nutritional symbiosis[C]//Stover P J, Balling R. Annual review of nutrition, Annual Reviews: Palo Alto, CA, USA, 2017(37): 477-500.

82
Greene L K , Andriambeloson J-B , Rasoanaivo H A , et al. Variation in gut microbiome structure across the annual hibernation cycle in a wild primate[J]. FEMS Microbiology Ecology, 2022, 98 (7): fiac070.

DOI

83
Popov I V , Berezinskaia I S , Popov I V , et al. Cultivable gut microbiota in synanthropic bats: Shifts of its composition and diversity associated with hibernation[J]. Animals, 2023, 13 (23): 3658.

DOI

84
Du Toit A . Busy symbionts during hibernation[J]. Nature Reviews Microbiology, 2022, 20 (4): 190.

85
Regan M D , Chiang E , Liu Y , et al. Nitrogen recycling via gut symbionts increases in ground squirrels over the hibernation season[J]. Science, 2022, 375 (6579): 460- 463.

DOI

86
Bouma H R , Carey H V , Kroese F G M . Hibernation: The immune system at rest[J]. Journal of Leukocyte Biology, 2010, 88 (4): 619- 624.

DOI

87
Jiang C , Storey K B , Yang H , et al. Aestivation in nature: Physiological strategies and evolutionary adaptations in hypometabolic states[J]. International Journal of Molecular Sciences, 2023, 24 (18): 14093.

DOI

88
Fritze M , Costantini D , Fickel J , et al. Immune response of hibernating European bats to a fungal challenge[J]. Biology Open, 2019, 8 (10): bio046078.

89
Irving A T , Ahn M , Goh G , et al. Lessons from the host defences of bats, a unique viral reservoir[J]. Nature, 2021, 589 (7842): 363- 370.

DOI

90
Dhivahar J , Parthasarathy A , Krishnan K , et al. Bat-associated microbes: Opportunities and perils, an overview[J]. Heliyon, 2023, 9 (12): e22351.

DOI

91
Troitsky T S , Laine V N , Lilley T M . When the host's away, the pathogen will play: The protective role of the skin microbiome during hibernation[J]. Animal Microbiome, 2023, 5 (1): 66.

DOI

92
Blehert D S , Hicks A C , Behr M , et al. Bat white-nose syndrome: An emerging fungal pathogen[J]. Science, 2009, 323 (5911): 227.

DOI

93
Frick W F , Pollock J F , Hicks A C , et al. An emerging disease causes regional population collapse of a common north american bat species[J]. Science, 2010, 329 (5992): 679- 682.

DOI

94
Gargas A , Trest M T , Christensen M , et al. Geomyces destructans sp. nov. associated with bat white-nose syndrome[J]. Mycotaxon, 2009, 108: 147- 154.

DOI

95
Warnecke L , Turner J M , Bollinger T K , et al. Inoculation of bats with European Geomyces destructans supports the novel pathogen hypothesis for the origin of white-nose syndrome[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109 (18): 6999- 7003.

96
Lorch J M , Meteyer C U , Behr M J , et al. Experimental infection of bats with Geomyces destructans causes white-nose syndrome[J]. Nature, 2011, 480 (7377): 376.

DOI

97
Brunet K , Alanio A , Lortholary O , et al. Reactivation of dormant/latent fungal infection[J]. Journal of Infection, 2018, 77 (6): 463- 468.

DOI

98
Phan T G , Croucher P I . The dormant cancer cell life cycle[J]. Nature Reviews Cancer, 2020, 20 (7): 398- 411.

DOI

99
Rehman S K , Haynes J , Collignon E , et al. Colorectal cancer cells enter a diapause-like DTP state to survive chemotherapy[J]. Cell, 2021, 184 (1): 226- 242.

DOI

100
Recasens A , Munoz L . Targeting cancer cell dormancy[J]. Trends in Pharmacological Sciences, 2019, 40 (2): 128- 141.

DOI

101
Vallette F M , Olivier C , Lezot F , et al. Dormant, quiescent, tolerant and persister cells: Four synonyms for the same target in cancer[J]. Biochemical Pharmacology, 2019, 162: 169- 176.

DOI

102
Lewis K . Persister cells, dormancy and infectious disease[J]. Nature Reviews Microbiology, 2007, 5 (1): 48- 56.

DOI

103
Wilmaerts D , Windels E M , Verstraeten N , et al. General mechanisms leading to persister formation and awakening[J]. Trends in Genetics, 2019, 35 (6): 401- 411.

DOI

104
Liang J , Feng J C , Zhang S , et al. Role of deep-sea equipment in promoting the forefront of studies on life in extreme environments[J]. Iscience, 2021, 24 (11): 103299.

DOI

105
Huang Z , Fang F , Ding L , et al. Technological advancements in field investigations of marine microorganisms: From sampling strategies to molecular analyses[J]. Journal of Marine Science and Engineering, 2023, 11 (10): 1981.

DOI

106
Lin Y , Chen J , Sun Z , et al. Editorial: Deep-sea sampling technology[J]. Frontiers in Marine Science, 2023, 10: 1182211.

DOI

107
Kingwell K . Microbial 'dark matter' yields new antibiotic[J]. Nature Reviews Drug Discovery, 2023, 22 (11): 872.

DOI

108
Jiao J Y , Liu L , Hua Z S , et al. Microbial dark matter coming to light: Challenges and opportunities[J]. National Science Review, 2021, 8 (3): nwaa280.

DOI

109
Dance A . The search for microbial dark matter[J]. Nature, 2020, 582 (7811): 301- 303.

DOI

110
Edgar R , Scholte N T B , Ebrahimkheil K , et al. Automated cardiac arrest detection using a photoplethysmography wristband: Algorithm development and validation in patients with induced circulatory arrest in the DETECT-1 study[J]. The Lancet Digital Health, 2024, 6 (3): e201- e210.

DOI

111
Sandmann S , Riepenhausen S , Plagwitz L , et al. Systematic analysis of ChatGPT, Google search and Llama 2 for clinical decision support tasks[J]. Nature Communications, 2024, 15 (1): 2050.

DOI

112
陈国青, 任明, 卫强, 等. 数智赋能: 信息系统研究的新跃迁[J]. 管理世界, 2022, 38 (1): 180- 196.

DOI

113
Jiang L Y , Liu X C , Nejatian N P , et al. Health system-scale language models are all-purpose prediction engines[J]. Nature, 2023, 619 (7969): 357- 362.

DOI

114
Birnie M T , Baram T Z . Principles of emotional brain circuit maturation[J]. Science, 2022, 376 (6597): 1055- 1056.

DOI

115
Hsueh B , Chen R , Jo Y , et al. Cardiogenic control of affective behavioural state[J]. Nature, 2023, 615 (7951): 292- 299.

DOI

116
Snoek L , Jack R E , Schyns P G , et al. Testing, explaining, and exploring models of facial expressions of emotions[J]. Science Advances, 2023, 9 (6): eabq8421.

DOI

Outlines

/