Commentary

Wireless wonders: How laser power transmission could reshape the future of energy

  • Jiewei LIU , 1 ,
  • Fulong XUE , 2, 3, * ,
  • Zhifeng WANG 4
Expand
  • 1. Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
  • 2. School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China
  • 3. Jiaxing Nanhu District Road-Air Cooperative Three-dimensional Transportation Industry Research Institute, Jiaxing 314007, China
  • 4. Beijing Jiu Tian Xing Ge Aerospace Technology Co., Ltd., Beijing 100102, China

Received date: 2024-09-09

  Online published: 2025-06-13

Copyright

All rights reserved. Unauthorized reproduction is prohibited.

Cite this article

Jiewei LIU , Fulong XUE , Zhifeng WANG . Wireless wonders: How laser power transmission could reshape the future of energy[J]. Science & Technology Review, 2025 , 43(9) : 15 -23 . DOI: 10.3981/j.issn.1000-7857.2024.09.01276

1
Chen Y , Mai R K , Zhang Y Y , et al. Improving misalignment tolerance for IPT system using a third-coil[J]. IEEE Transactions on Power Electronics, 2019, 34 (4): 3009- 3013.

DOI

2
Zheng Y F , Zhang G D , Huan Z H , et al. Wireless laser power transmission: Recent progress and future challenges[J]. Space Solar Power and Wireless Transmission, 2024, 1 (1): 17- 26.

DOI

3
Hand C F. Novel 300–watt single- emitter laser diodes for laser initiation applications[C]//Proceedings of Optical Technologies for Arming, Safing, Fuzing, and Firing VI. SPIE, 2010, 7795: 779507.

4
Li H X, Reinhardt F, Chyr I, et al. High-efficiency, high-power diode laser chips, bars, and stacks[C]//Proceedings of High-Power Diode Laser Technology and Applications VI. SPIE, 2008, 6876: 68760G.

5
Bruesselbach H , Sumida D S . A 2.65-kW Yb: YAG single-rod laser[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11 (3): 600- 603.

DOI

6
Bo Y , Geng A C , Bi Y , et al. 1.15kW continuous-wave generation by diode- side-pumped two–rod Nd: YAG laser[J]. Chinese Physics, 2005, 14 (4): 771- 773.

DOI

7
McNaught S J, Asman C P, Injeyan H, et al. 100-kW coherently combined Nd: YAG MOPA laser array[C]//Proceedings of Frontiers in Optics 2009/Laser Science XXV/Fall 2009 OSA Optics & Photonics Technical Digest. Washington, D C: OSA, 2009.

8
Jeong Y , Sahu J , Payne D , et al. Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power[J]. Optics Express, 2004, 12 (25): 6088- 6092.

DOI

9
Fafard S , Masson D P . 74.7% efficient GaAs-based laser power converters at 808 nm at 150 K[J]. Photonics, 2022, 9 (8): 579.

DOI

10
Guo X , Chen X M , Li Q Y , et al. High-efficiency wide-bandgap perovskite solar cells for laser energy transfer underwater[J]. Energy Technology, 2023, 11 (7): 2300083.

DOI

11
Shen C X , Ling X F , Li Y S , et al. Practical efficiency limit of laser power converters based on lead halide perovskite[J]. Applied Physics Letters, 2023, 123 (15): 153301.

DOI

12
Wang Y F , Zheng Z , Wang J Q , et al. Organic laser power converter for efficient wireless micro power transfer[J]. Nature Communications, 2023, 14 (1): 5511.

DOI

13
Duncan K J. Laser based power transmission: Component selection and laser hazard analysis[C]//Proceedings of IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW). Piscataway, NJ: IEEE, 2016: 100–103.

14
Mohsan S A H , Othman N Q H , Khan M A , et al. A comprehensive review of micro UAV charging techniques[J]. Micromachines, 2022, 13 (6): 977.

DOI

15
Mohsan S A H , Qian H Z , Amjad H . A comprehensive review of optical wireless power transfer technology[J]. Frontiers of Information Technology & Electronic Engineering, 2023, 24 (6): 767- 800.

DOI

16
时振磊, 孟文文, 申景诗, 等. 无人机激光无线能量传输APT系统跟踪设计[J]. 激光技术, 2019, 43 (6): 809- 814.

17
Kudryashov A, Samarkin V, Alexandrov A, et al. Adaptive optics for high–power laser beam control[M]// Springer Proceedings in Physics. Berlin: Springer, 2005: 237–248.

18
Yugami H, Kanamori Y, Arashi H, et al. Field experiment of laser energy transmission and laser to electric conversion[C]//Proceedings of IECEC-97 Proceedings of the Thirty-Second Intersociety Energy Conversion Engineering Conference. Piscataway, NJ: IEEE, 1997.

19
He T , Yang S H , Zhang H Y , et al. High–power high-efficiency laser power transmission at 100 m using optimized multi-cell GaAs converter[J]. Chinese Physics Letters, 2014, 31 (10): 104203.

DOI

20
Jomen R , Tanaka F , Akiba T , et al. Conversion efficiencies of single–junction Ⅲ–Ⅴ solar cells based on InGaP, GaAs, InGaAsP, and InGaAs for laser wireless power transmission[J]. Japanese Journal of Applied Physics, 2018, 57 (8S3): 08RD12.

DOI

21
Researchers transmit energy with laser in historic power beaming demonstration[EB/OL]. [2024–07– 22]. https://www.nrl.navy.mil/Media/News/Article/2504007/researcherstransmit-energy-with-laser-in-historicpower-beaming-demonstration/.

22
Ericsson and PowerLight demonstrate world's first wireless powered 5G base station[EB/OL]. [2024–07– 22]. https://www.ericsson.com/en/news/2021/10/ericsson-and-powerlight-achieve-base-station-wirelesscharging-breakthrough.

23
Blackwell T. Recent demonstrations of laser power beaming at DFRC and MSFC[C]//Proceedings of AIP Conference Proceedings. AIP, 2005: 73-85.

24
Kawashima N , Takeda K , Yabe K . Application of the laser energy transmission technology to drive a small airplane[J]. Chinese Optics Letters, 2007, 5 (101): 109- 110.

25
Lockheed martin performs first ever outdoor flight test of laser powered UAS[EB/OL]. [2024–07–22]. https://news.lockheedmartin.com/2012-08-07-Lockheed-Martin-Performs-FirstEver-Outdoor-Flight-Test-Of-LaserPowered-UAS.

26
Steinsiek F. Wireless power transmission experiment as an early contribution to planetary exploration missions[C]//Proceedings of 54th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law. Reston, Virigina: AIAA, 2003: AIAAiac–03–r. 3.06.

27
Motohiro T , Takeda Y , Ito H , et al. Concept of the solar-pumped laser- photovoltaics combined system and its application to laser beam power feeding to electric vehicles[J]. Japanese Journal of Applied Physics, 2017, 56 (8S2): 08MA07.

DOI

28
Becker D E, Chiang R, Keys C C, et al. Photovoltaic-concentrator based power beaming for space elevator application[C]//Proceedings of AIP Conference Proceedings. AIP, 2010.

29

30
Silent falcon selected by DARPA for laser–powered UAS project[EB/OL]. [2024–07–22]. https://www.unmannedsystemstechnology.com/2018/08/silent-falcon-selected-by-darpa-forlaser-powered-uas-project/.

31
Darpa airborne energy well seeks laser propulsion on aircrafts to power rechargable unmanned aerial systems[EB/OL]. [2024–07–22]. https://idstch.com/military/air/darpaairborne-energy-well-seeks-laserpropulsion-on-aircrafts-to-power-rechargable-unmanned-aerial-systems/.

32
Kong M W , Sun B , Sarwar R , et al. Underwater wireless optical communication using a lens–free solar panel receiver[J]. Optics Communications, 2018, 426: 94- 98.

DOI

33
Chen X , Lyu W C , Yu C Y , et al. Diversity–reception UWOC system using solar panel array and maximum ratio combining[J]. Optics Express, 2019, 27 (23): 34284- 34297.

DOI

34
de Oliveira Filho J I , Trichili A , Ooi B S , et al. Toward self-powered Internet of underwater things devices[J]. IEEE Communications Magazine, 2020, 58 (1): 68- 73.

DOI

35
MIT Technology Review. Power beaming comes of age[EB/OL]. [2024–07–22]. https://www.technologyreview.com/2022/10/06/1060650/power-beaming-comes-of-age/.

36
Kalyuzhnyy N A , Emelyanov V M , Evstropov V V , et al. Optimization of photoelectric parameters of InGaAs metamorphic laser (λ=1064 nm) power converters with over 50% efficiency[J]. Solar Energy Materials and Solar Cells, 2020, 217: 110710.

DOI

37
Algora C , García I , Delgado M , et al. Beaming power: Photovoltaic laser power converters for power- by-light[J]. Joule, 2022, 6 (2): 340- 368.

DOI

38
Smith R C , Baker K S . Optical properties of the clearest natural waters (200–800 nm)[J]. Applied Optics, 1981, 20 (2): 177- 184.

DOI

Outlines

/