Exclusive

Advanced techniques in rice breeding and germplasm innovation

  • Yifan CHE , 1 ,
  • Kejian WANG 2 ,
  • Yuchun RAO , 1, * ,
  • Yong HUANG , 2, *
Expand
  • 1. College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
  • 2. China National Rice Research Institute, National Key Laboratory of Rice Biological Breeding, Hangzhou 310006, China

Received date: 2024-12-04

  Online published: 2025-06-25

Copyright

All rights reserved. Unauthorized reproduction is prohibited.

Cite this article

Yifan CHE , Kejian WANG , Yuchun RAO , Yong HUANG . Advanced techniques in rice breeding and germplasm innovation[J]. Science & Technology Review, 2025 , 43(10) : 31 -43 . DOI: 10.3981/j.issn.1000-7857.2025.03.00106

1
Nations U . World population prospects 2019: Highlights[M]. New York: United Nations, 2019.

2
Ahmar S , Gill R A , Jung K H , et al. Conventional and molecular techniques from simple breeding to speed breeding in crop plants: Recent advances and future outlook[J]. International Journal of Molecular Sciences, 2020, 21 (7): 2590.

DOI

3
Resende R T , Piepho H P , Rosa G J M , et al. Enviromics in breeding: Applications and perspectives on envirotypic- assisted selection[J]. Theoretical and Applied Genetics, 2021, 134 (1): 95- 112.

DOI

4
Bhoi A , Yadu B , Chandra J , et al. Mutagenesis: A coherent technique to develop biotic stress resistant plants[J]. Plant Stress, 2022, 3: 100053.

DOI

5
Steinwand M A , Ronald P C . Crop biotechnology and the future of food[J]. Nature Food, 2020, 1 (5): 273- 283.

DOI

6
Tie W W , Zhou F , Wang L , et al. Reasons for lower transformation efficiency in indica rice using Agrobacterium tumefaciens-mediated transformation: Lessons from transformation assays and genome-wide expression profiling[J]. Plant Molecular Biology, 2012, 78 (1/2): 1- 18.

7
Sahoo K K , Tripathi A K , Pareek A , et al. An improved protocol for efficient transformation and regeneration of diverse indica rice cultivars[J]. Plant Methods, 2011, 7 (1): 49.

DOI

8
Li Y H , Hallerman E M , Liu Q S , et al. The development and status of bt rice in China[J]. Plant Biotechnology Journal, 2016, 14 (3): 839- 848.

DOI

9
Chen M , Shelton A , Ye G Y . Insect-resistant genetically modified rice in China: From research to commercialization[J]. Annual Review of Entomology, 2011, 56: 81- 101.

DOI

10
Bai S W , Yu H , Wang B , et al. Retrospective and perspective of rice breeding in China[J]. Journal of Genetics and Genomics, 2018, 45 (11): 603- 612.

DOI

11
Yuan L P . A preliminary report on male sterility in rice, Oryza sativa L[J]. Chinese Science Bulletin, 1966, 11 (7): 322- 322.

12
石明松. 对光照长度敏感的隐性雄性不育水稻的发现与初步研究[J]. 中国农业科学, 1985, 18 (2): 44- 48.

13
杨仕华, 程本义, 沈伟峰, 等. 中国两系杂交水稻选育与应用进展[J]. 杂交水稻, 2009, 24 (1): 5- 9.

14
Wang F , Peng S B . Yield potential and nitrogen use efficiency of China's super rice[J]. Journal of Integrative Agriculture, 2017, 16 (5): 1000- 1008.

DOI

15
Cheng S H , Zhuang J Y , Fan Y Y , et al. Progress in research and development on hybrid rice: A super-domesticate in China[J]. Annals of Botany, 2007, 100 (5): 959- 966.

DOI

16
Grover A , Sharma P C . Development and use of molecular markers: Past and present[J]. Critical Reviews in Biotechnology, 2016, 36 (2): 290- 302.

DOI

17
Collard B C Y , MacKill D J . Marker-assisted selection: An approach for precision plant breeding in the twenty-first century[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2008, 363 (1491): 557- 572.

DOI

18
Hittalmani S , Parco A , Mew T V , et al. Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice[J]. Theoretical and Applied Genetics, 2000, 100 (7): 1121- 1128.

DOI

19
Song W Y , Wang G L , Chen L L , et al. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21[J]. Science, 1995, 270 (5243): 1804- 1806.

DOI

20
Tu J , Zhang G , Datta K , et al. Field performance of transgenic elite commercial hybrid rice expressing Bacillus thuringiensis delta-endotoxin[J]. Nature Biotechnology, 2000, 18 (10): 1101- 1104.

DOI

21
Cheng X Y , Zhou G H , Chen W , et al. Current status of molecular rice breeding for durable and broad-spectrum resistance to major diseases and insect pests[J]. Theoretical and Applied Genetics, 2024, 137 (10): 219.

DOI

22
Xu Y B , Crouch J H . Marker-assisted selection in plant breeding: From publications to practice[J]. Crop Science, 2008, 48 (2): 391- 407.

DOI

23
Moose S P , Mumm R H . Molecular plant breeding as the foundation for 21st century crop improvement[J]. Plant Physiology, 2008, 147 (3): 969- 977.

DOI

24
Ribaut J M , Hoisington D . Marker-assisted selection: New tools and strategies[J]. Trends in Plant Science, 1998, 3 (6): 236- 239.

DOI

25
Varshney R K , Graner A , Sorrells M E . Genic microsatellite markers in plants: Features and applications[J]. Trends in Biotechnology, 2005, 23 (1): 48- 55.

DOI

26
Edwards D , Batley J , Snowdon R J . Accessing complex crop genomes with next-generation sequencing[J]. Theoretical and Applied Genetics, 2013, 126 (1): 1- 11.

DOI

27
Jiang J , Gill B S . Nonisotopic in situ hybridization and plant genome mapping: The first 10 years[J]. Genome, 1994, 37 (5): 717- 725.

DOI

28
Frisch M , Melchinger A E . Marker-assisted backcrossing for introgression of a recessive gene[J]. Crop Science, 2001, 41 (5): 1485- 1494.

DOI

29
Hospital F . Selection in backcross programmes[J]. Philo-sophical Transactions of the Royal Society of London Series B, Biological Sciences, 2005, 360 (1459): 1503- 1511.

DOI

30
Jinek M , Chylinski K , Fonfara I , et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337 (6096): 816- 821.

DOI

31
Chen K L , Wang Y P , Zhang R , et al. CRISPR/cas genome editing and precision plant breeding in agriculture[J]. Annual Review of Plant Biology, 2019, 70: 667- 697.

DOI

32
Zhang H , Zhang J S , Wei P L , et al. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation[J]. Plant Biotechnology Journal, 2014, 12 (6): 797- 807.

DOI

33
Wang F J , Wang C L , Liu P Q , et al. Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922[J]. PLoS One, 2016, 11 (4): e0154027.

DOI

34
Zhang A N , Liu Y , Wang F M , et al. Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22 gene[J]. Molecular Breeding, 2019, 39: 47.

DOI

35
Li M R , Li X X , Zhou Z J , et al. Reassessment of the four yield-related genes Gn1a, DEP1 GS3 and IPA1 in rice using a CRISPR/Cas9 system[J]. Frontiers in Plant Science, 2016, 7: 377.

36
Huang Y , Dong H R , Shang M Q , et al. CRISPR/Cas systems: The link between functional genes and genetic improvement[J]. The Crop Journal, 2021, 9 (3): 678- 687.

DOI

37
Xiao N , Pan C H , Li Y H , et al. Genomic insight into balancing high yield, good quality, and blast resistance of Japonica rice[J]. Genome Biology, 2021, 22 (1): 283.

DOI

38
Wei X , Chen M J , Zhang Q , et al. Genomic investigation of 18, 421 lines reveals the genetic architecture of rice[J]. Science, 2024, 385 (6704): eadm8762.

DOI

39
Hammer G , Cooper M , Tardieu F , et al. Models for navigating biological complexity in breeding improved crop plants[J]. Trends in Plant Science, 2006, 11 (12): 587- 593.

DOI

40
Tester M , Langridge P . Breeding technologies to increase crop production in a changing world[J]. Science, 2010, 327 (5967): 818- 822.

DOI

41
Meuwissen T H , Hayes B J , Goddard M E . Prediction of total genetic value using genome-wide dense marker maps[J]. Genetics, 2001, 157 (4): 1819- 1829.

DOI

42
Forster B P , Heberle-Bors E , Kasha K J , et al. The resurgence of haploids in higher plants[J]. Trends in Plant Science, 2007, 12 (8): 368- 375.

DOI

43
Maqbool M A , Beshir A , Khokhar E S . Doubled haploids in maize: Development, deployment, and challenges[J]. Crop Science, 2020, 60 (6): 2815- 2840.

DOI

44
Dunwell J M . Haploids in flowering plants: Origins and exploitation[J]. Plant Biotechnology Journal, 2010, 8 (4): 377- 424.

DOI

45
Lantos C , Jancsó M , Székely Á , et al. Improvement of anther culture to integrate doubled haploid technology in temperate rice (Oryza sativa L.) breeding[J]. Plants, 2022, 11 (24): 3446.

DOI

46
Dwivedi S L , Britt A B , Tripathi L , et al. Haploids: Constraints and opportunities in plant breeding[J]. Biotechnology Advances, 2015, 33 (6): 812- 829.

DOI

47
Liu C X , Li X , Meng D X , et al. A 4-bp insertion at ZmPLA1 encoding a putative phospholipase A generates haploid induction in maize[J]. Molecular Plant, 2017, 10 (3): 520- 522.

DOI

48
Hansen A L , Plever C , Pedersen H C , et al. Efficient in vitro chromosome doubling during beta vulgaris ovule culture[J]. Plant Breeding, 1994, 112 (2): 89- 95.

DOI

49
Jacquier N M A , Gilles L M , Pyott D E , et al. Puzzling out plant reproduction by haploid induction for innovations in plant breeding[J]. Nature Plants, 2020, 6 (6): 610- 619.

DOI

50
Liu C L , Yan S , Mao F M , et al. Large-scale production of rice haploids by combining superior haploid inducer with PTGMS lines[J]. Plant Communications, 2024, 5 (12): 101067.

DOI

51
Thomas W T B, Forster B P, Gertsson B. Doubled haploids in breeding[M]//Doubled Haploid Production in Crop Plants. Dordrecht: Springer Netherlands, 2003: 337-349.

52
Ahloowalia B S , Maluszynski M , Nichterlein K . Global impact of mutation-derived varieties[J]. Euphytica, 2004, 135 (2): 187- 204.

DOI

53
Gao C X . Genome engineering for crop improvement and future agriculture[J]. Cell, 2021, 184 (6): 1621- 1635.

DOI

54
Wang T L , Uauy C , Robson F , et al. TILLING in extremis[J]. Plant Biotechnology Journal, 2012, 10 (7): 761- 772.

DOI

55
Bernardo R . Molecular markers and selection for complex traits in plants: Learning from the last 20 years[J]. Crop Science, 2008, 48 (5): 1649- 1664.

DOI

56
Holland J B . Genetic architecture of complex traits in plants[J]. Current Opinion in Plant Biology, 2007, 10 (2): 156- 161.

DOI

57
Scheben A , Wolter F , Batley J , et al. Towards CRISPR/Cas crops–bringing together genomics and genome editing[J]. New Phytologist, 2017, 216 (3): 682- 698.

DOI

58
Xu Y B , Lu Y L , Xie C X , et al. Whole-genome strategies for marker-assisted plant breeding[J]. Molecular Breeding, 2012, 29 (4): 833- 854.

DOI

59
McCouch S . Diversifying selection in plant breeding[J]. PLoS Biology, 2004, 2 (10): e347.

DOI

60
Chen L J , Lee D S , Song Z P , et al. Gene flow from cultivated rice (Oryza sativa) to its weedy and wild relatives[J]. Annals of Botany, 2004, 93 (1): 67- 73.

DOI

61
Giri C C , Vijaya Laxmi G . Production of transgenic rice with agronomically useful genes: An assessment[J]. Biotechnology Advances, 2000, 18 (8): 653- 683.

DOI

62
Schouten H J , Krens F A , Jacobsen E . Cisgenic plants are similar to traditionally bred plants: International regulations for genetically modified organisms should be altered to exempt cisgenesis[J]. EMBO Reports, 2006, 7 (8): 750- 753.

DOI

63
Ishii T , Araki M . Consumer acceptance of food crops developed by genome editing[J]. Plant Cell Reports, 2016, 35 (7): 1507- 1518.

DOI

64
Smyth S J . Canadian regulatory perspectives on genome engineered crops[J]. GM Crops & Food, 2017, 8 (1): 35- 43.

65
温晓婷, 张鑫, 李景鹏, 等. 高能重离子束辐射水稻诱变育种研究进展[J]. 土壤与作物, 2022, 11 (2): 179- 191.

66
陈志强, 周丹华, 郭涛, 等. 水稻航天生物育种研究进展[J]. 华南农业大学学报, 2019, 40 (5): 195- 202.

67
陈浩. 功能性水稻研究思路和前景分析[J]. 生命科学, 2016, 28 (10): 1279- 1286.

68
Laura G. 原子能机构启动亚洲及太平洋地区植物突变育种网[EB/OL]. (2019-08-16) [2025-02-19]. https://www.iaea.org/zh/newscenter/news/jia-kuai-sheng-chang-yuan-zineng-ji-gou-qi-dong-ya-zhou-ji-tai-ping-yang-di-qu-zhi-wutu-bian-yu-chong-wang.

69
Paine J A , Shipton C A , Chaggar S , et al. Improving the nutritional value of Golden Rice through increased pro-vitamin A content[J]. Nature Biotechnology, 2005, 23 (4): 482- 487.

DOI

70
谢华安. 汕优63选育理论与实践[M]. 北京: 中国农业出版社, 2005: 78- 79.

71
第三代杂交水稻首次公开测产[EB/OL]. (2019-10-22) [2025-02-19]. https://www.gov.cn/xinwen/2019-10/22/content_5443674.htm.

72
谢放鸣, 彭少兵. 杂交水稻在国外的发展历程与展望[J]. 科学通报, 2016, 61 (35): 3858- 3868.

73
姚姝, 陈涛, 张亚东, 等. 利用分子标记辅助选择聚合水稻Pi-taPi-bWx-mq基因[J]. 作物学报, 2017, 43 (11): 1622- 1631.

74
Arunakumari K , Durgarani C V , Satturu V , et al. Marker-assisted pyramiding of genes conferring resistance against bacterial blight and blast diseases into Indian rice variety MTU1010[J]. Rice Science, 2016, 23 (6): 306- 316.

DOI

75
Hui S Z , Li H J , Mawia A M , et al. Production of aromatic three-line hybrid rice using novel alleles of BADH2[J]. Plant Biotechnology Journal, 2022, 20 (1): 59- 74.

DOI

76
Arra Y , Auguy F , Stiebner M , et al. Rice Yellow Mottle Virus resistance by genome editing of the Oryza sativa L. ssp. Japonica nucleoporin gene OsCPR5.1 but not OsCPR5.2[J]. Plant Biotechnology Journal, 2024, 22 (5): 1399- 1311.

77
Li H Y , Li J Y , Chen J L , et al. Precise modifications of both exogenous and endogenous genes in rice by prime editing[J]. Molecular Plant, 2020, 13 (5): 671- 674.

DOI

78
Parveen R , Kumar M , Swapnil , et al. Understanding the genomic selection for crop improvement: Current progress and future prospects[J]. Molecular Genetics and Genomics, 2023, 298 (4): 813- 821.

DOI

79
Stein J C , Yu Y , Copetti D , et al. Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza[J]. Nature Genetics, 2018, 50 (2): 285- 296.

DOI

80
Hu Y J , Patra P , Pisanty O , et al. Multi-Knock-a multi- targeted genome-scale CRISPR toolbox to overcome functional redundancy in plants[J]. Nature Plants, 2023, 9 (4): 572- 587.

DOI

81
Liu P , Panda K , Edwards S A , et al. Transposase-assisted target-site integration for efficient plant genome engineering[J]. Nature, 2024, 631 (8021): 593- 600.

DOI

82
Sun C , Lei Y , Li B S , et al. Precise integration of large DNA sequences in plant genomes using PrimeRoot editors[J]. Nature Biotechnology, 2024, 42 (2): 316- 327.

DOI

83
Huang J Y , Lin Q P , Fei H Y , et al. Discovery of deaminase functions by structure-based protein clustering[J]. Cell, 2023, 186 (15): 3182-3195. e14.

DOI

84
Zou J P , Huang Y , Gao C X , et al. Unlocking crop diversity: Enhancing variations through genome editing[J]. Science Bulletin, 2024, 69 (3): 281- 284.

DOI

85
McCouch S R , McNally K L , Wang W , et al. Genomics of gene banks: A case study in rice[J]. American Journal of Botany, 2012, 99 (2): 407- 423.

DOI

86
Qi K J , Wu X , Gu C , et al. BreedingEIS: An efficient evaluation information system for crop breeding[J]. Plant Phenomics, 2023, 5: 0029.

DOI

87
Li H H , Li X , Zhang P , et al. Smart Breeding Platform: A web-based tool for high-throughput population genetics, phenomics, and genomic selection[J]. Molecular Plant, 2024, 17 (5): 677- 681.

DOI

88
Wassmann R, Jagadish S V K, Sumfleth K, et al. Chapter 3 regional vulnerability of climate change impacts on Asian rice production and scope for adaptation[M]//Advances in Agronomy. Amsterdam: Elsevier, 2009: 91-133.

89
Hartung F , Schiemann J . Precise plant breeding using new genome editing techniques: Opportunities, safety and regulation in the EU[J]. The Plant Journal, 2014, 78 (5): 742- 752.

DOI

Outlines

/