Exclusive

Research progress in soybean and corn belt composite planting technology

  • Manxiu WANG , 1 ,
  • Guolong GE 1 ,
  • Xiangqian ZHANG , 2, 3, * ,
  • Xuanyi CHANG 1 ,
  • Hexiao MA 1 ,
  • Xiaoxiang WANG 1 ,
  • Jianwei ZHANG 2, 3 ,
  • Dejian ZHANG , 1, *
Expand
  • 1. College of Life Sciences, Inner Mongolia University, Hohhot 010020, China
  • 2. Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China
  • 3. Key Laboratory of Pollution Prevention and Ecological Restoration of Degenerated Farmland in Inner Mongolia Autonomous Region, Hohhot 010031, China

Received date: 2024-06-23

  Online published: 2025-06-25

Copyright

All rights reserved. Unauthorized reproduction is prohibited.

Cite this article

Manxiu WANG , Guolong GE , Xiangqian ZHANG , Xuanyi CHANG , Hexiao MA , Xiaoxiang WANG , Jianwei ZHANG , Dejian ZHANG . Research progress in soybean and corn belt composite planting technology[J]. Science & Technology Review, 2025 , 43(10) : 54 -60 . DOI: 10.3981/j.issn.1000-7857.2024.06.00737

1
翟涛, 吴玲. 开放视角下中国大豆产业发展态势与振兴策略研究[J]. 大豆科学, 2020, 39 (3): 472- 478.

2
习银生, 杨丽. 我国玉米供需形势和进口前景分析[J]. 中国农垦, 2012 (11): 36- 41.

3
袁晓婷, 王甜, 罗凯, 等. 带宽和株距对带状间作大豆物质积累分配及产量形成的影响[J]. 作物学报, 2024, 50 (1): 161- 171.

4
Ren D D , Yang H , Zhou L F , et al. The Land-Water-Food-Environment nexus in the context of China's soybean import[J]. Advances in Water Resources, 2021, 151: 103892.

DOI

5
杨立达, 任俊波, 彭新月, 等. 施氮与种间距离下大豆/玉米带状套作作物生长特性及其对产量形成的影响[J]. 作物学报, 2024, 50 (1): 251- 264.

6
Gu Y , Zheng H Y , Li S , et al. Effects of narrow-wide row planting patterns on canopy photosynthetic characteristics, bending resistance and yield of soybean in maize-soybean intercropping systems[J]. Scientific Reports, 2024, 14 (1): 9361.

DOI

7
Wu Y S , He D , Wang E L , et al. Modelling soybean and maize growth and grain yield in strip intercropping systems with different row configurations[J]. Field Crops Research, 2021, 265: 108122.

DOI

8
Chen P , Song C , Liu X M , et al. Yield advantage and nitro-gen fate in an additive maize-soybean relay intercropping system[J]. Science of the Total Environment, 2019, 657: 987- 999.

DOI

9
Ahmed S , Ali Raza M , Zhou T , et al. Responses of soybean dry matter production, phosphorus accumulation, and seed yield to sowing time under relay intercropping with maize[J]. Agronomy, 2018, 8 (12): 282.

DOI

10
杨欢, 周颖, 陈平, 等. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48 (6): 1476- 1487.

11
Feng L , Yang W T , Tang H Y , et al. Bandwidth row ratio configuration affect interspecific effects and land productivity in maize-soybean intercropping system[J]. Agronomy, 2022, 12 (12): 3095.

DOI

12
王涛. 玉米-大豆带状复合种植技术: 四川农业大学杨文钰教授成果展示[J]. 科技成果管理与研究, 2012 (7): 88- 89.

13
王晓彤, 贾孟杰, 黄云飞. 巴基斯坦总理"点赞" 中国大豆玉米带状复合种植技术[J]. 农民文摘, 2022 (2): 60- 62.

14
Dabessa A , Debala C . Longterm soybean-maize rotation experiments in cereal-based farming systems at Bako, Western Ethiopia[J]. Food and Energy Security, 2023, 12 (5): e496.

DOI

15
张玉, 司保栋. 浅谈大豆玉米带状复合种植技术[J]. 农业开发与装备, 2024 (3): 202- 204.

16
杨文钰, 雍太文, 王小春, 等. 玉米-大豆带状复合种植技术体系创建与应用[J]. 中国高新科技, 2020 (15): 149- 151.

17
杨文钰, 雍太文, 任万军, 等. 发展套作大豆, 振兴大豆产业[J]. 大豆科学, 2008, 27 (1): 1- 7.

18
李春燕, 曹鹏鹏, 高祺, 等. 禹城大豆玉米带状复合种植模式下大豆品种筛选试验[J]. 中国种业, 2024 (4): 78- 82.

19
孙玉. 盘关镇大豆玉米带状复合种植技术分析[J]. 种子科技, 2024, 42 (8): 52- 54.

20
陈小龙, 赵元凤, 张海勃. 大豆玉米带状复合种植模式与技术: 以内蒙古为例[J]. 中国农机化学报, 2023, 44 (1): 48-52, 64.

21
Li Q J , Xue Z J , Zhou Z C . Effects of vegetation restoration on nutrient and microbial properties of soil aggregates with different particle sizes in the Loess Hilly Regions of Ningxia, Northwest China[J]. Ying Yong Sheng Tai Xue Bao, 2019, 30 (1): 137- 145.

22
Zhang S , Meng L B , Hou J , et al. Maize/soybean intercropping improves stability of soil aggregates driven by arbuscular mycorrhizal fungi in a black soil of NorthEast China[J]. Plant and Soil, 2022, 481 (1): 63- 82.

23
孙涛, 冯晓敏, 高新昊, 等. 多样化种植对土壤团聚体组成及其有机碳和全氮含量的影响[J]. 中国农业科学, 2023, 56 (15): 2929- 2940.

24
王婷, 李永梅, 王自林, 等. 间作对玉米根系分泌物及团聚体稳定性的影响[J]. 水土保持学报, 2018, 32 (3): 185- 190.

25
Ma R T , Yu N , Zhao S W , et al. Evaluation of the effects of long-term maize-peanut intercropping on soil aggregate stability based on different methods[J]. Soil Use and Management, 2024, 40 (1): e13015.

DOI

26
黄天忠, 曹国璠. 不同间作模式对油茶林地土壤理化性质的影响[J]. 农技服务, 2024, 41 (4): 32- 36.

27
闫非凡. 玉米-大豆轮作对大豆产量及土壤微生物群落的影响[D]. 延吉: 延边大学, 2021.

28
秦振巧. 大豆与玉米间作、轮作技术及其对土壤肥力的影响[J]. 种子科技, 2024, 42 (12): 136- 138.

29
郭金瑞, 宋振伟, 高洪军, 等. 玉米大豆长期轮作对土壤物理特性与水热特征的影响[J]. 大豆科学, 2017, 36 (2): 226- 232.

30
覃庆福, 罗仁桂, 秦凤琴. 大豆玉米带状复合种植技术[J]. 农业开发与装备, 2024 (1): 157- 159.

31
Feng L , Hu Y , Shi K , et al. Synergistic effects of crop aboveground growth and root traits guarantee stable yield of strip relay intercropping maize[J]. Agronomy, 2024, 14 (3): 527.

DOI

32
Zhang P , Sun J Y , Li L J , et al. Effect of soybean and maize rotation on soil microbial community structure[J]. Agronomy, 2019, 9 (2): 42.

DOI

33
Nourbakhsh F , Koocheki A , Mahallati N M . Investigation of biodiversity and some of the ecosystem services in the inter-cropping of Corn, Soybean and Marshmallow[J]. International Journal of Plant Production, 2019, 13 (1): 35- 46.

DOI

34
张峰, 李晓, 张建, 等. 玉米-大豆轮作对土壤氮、磷、钾养分含量的影响[J]. 植物营养与肥料学报, 2015, 21 (3): 772- 778.

35
雍太文, 刘小明, 刘文钰, 等. 减量施氮对玉米-大豆套作系统下作物氮素吸收和利用效率的影响[J]. 生态学报, 2015, 35 (13): 4473- 4482.

36
Gutiérrez-Núñez M S , Gavito M E . Timing of connection to mycorrhizal networks matters: Nutrition, N fixation, and transfer of fixed N in maize-bean intercropping[J]. Applied Soil Ecology, 2024, 195: 105274.

DOI

37
雍太文, 杨文钰, 任万军, 等. 两种三熟套作体系中的氮素转移及吸收利用[J]. 中国农业科学, 2009, 42 (9): 3170- 3178.

38
Zhou Q , Wang L C , Xing Y , et al. Effects of intercropping Chinese milk vetch on functional characteristics of soil microbial community in rape rhizosphere[J]. Ying Yong Sheng Tai Xue Bao, 2018, 29 (3): 909- 914.

39
代真林, 汪娅婷, 姚秀英, 等. 玉米大豆间作模式对玉米根际土壤微生物群落特征、玉米产量及病害的影响[J]. 云南农业大学学报(自然科学), 2020, 35 (5): 756- 764.

40
Zhang G Z , Yang H , Zhang W P , et al. Interspecific interactions between crops influence soil functional groups and networks in a maize/soybean intercropping system[J]. Agriculture, Ecosystems & Environment, 2023, 355: 108595.

41
Zheng B C , Zhou Y , Chen P , et al. Maize-legume intercropping promote N uptake through changing the root spatial distribution, legume nodulation capacity, and soil N availability[J]. Journal of Integrative Agriculture, 2022, 21 (6): 1755- 1771.

DOI

42
Wu Y S , Wang E L , Gong W Z , et al. Soybean yield variations and the potential of intercropping to increase production in China[J]. Field Crops Research, 2023, 291: 108771.

DOI

43
Cui L , Yang W Y , Huang N , et al. Effects of maize plant types on dry matter accumulation characteristics and yield of soybean in maize-soybean intercropping systems[J]. Ying Yong Sheng Tai Xue Bao, 2015, 26 (8): 2414- 2420.

44
刘思宇, 高凯. 间作中作物和土壤养分利用及化学计量特征研究[J]. 安徽农学通报, 2025, 31 (5): 68- 72.

45
李美霞, 陈骋, 汪健, 等. 不同带状复合种植模式对大豆玉米农艺性状及产量的影响[J]. 甘肃农业大学学报, 2025 (5): 17- 18.

46
李雅佩. 大豆玉米带状复合种植不同行比对作物生长、产量和经济效益的影响[J]. 农业科技通讯, 2024 (9): 112- 115.

47
袁嘉磊. 玉米大豆不同间作模式群体生理基础及适宜性研究[D]. 呼和浩特: 内蒙古农业大学, 2021.

48
高砚亮, 孙占祥, 白伟, 等. 玉米‖花生间作系统作物产量及根系空间分布特征的影响[J]. 玉米科学, 2016, 24 (6): 79- 87.

49
方萍. 玉-豆间作对菜用大豆干物质积累、产量及品质的影响[D]. 雅安: 四川农业大学, 2016.

50
文熙宸, 王小春, 邓小燕, 等. 玉米-大豆套作模式下氮肥运筹对玉米产量及干物质积累与转运的影响[J]. 作物学报, 2015, 41 (3): 448- 457.

51
Luo K , Yuan X T , Zuo J , et al. Light recovery after maize harvesting promotes soybean flowering in a maize-soybean relay strip intercropping system[J]. The Plant Journal, 2024, 118 (6): 2188- 2201.

DOI

52
Zheng H Y , Wang J Y , Cui Y , et al. Effects of row spacing and planting pattern on photosynthesis, chlorophyll fluorescence, and related enzyme activities of maize ear leaf in maize-soybean intercropping[J]. Agronomy, 2022, 12 (10): 2503.

DOI

53
Kou H T , Liao Z Q , Zhang H , et al. Grain yield, water-land productivity and economic profit responses to row configuration in maize-soybean strip intercropping systems under drip fertigation in arid northwest China[J]. Agricultural Water Management, 2024, 297: 108817.

DOI

54
李植, 秦向阳, 王晓光, 等. 大豆/玉米间作对大豆叶片光合特性和叶绿素荧光动力学参数的影响[J]. 大豆科学, 2010, 29 (5): 808- 811.

55
程彬, 刘卫国, 王莉, 等. 种植密度对玉米-大豆带状间作下大豆光合、产量及茎秆抗倒的影响[J]. 中国农业科学, 2021, 54 (19): 4084- 4096.

56
Wang Y B , Huang R D , Zhou Y F . Effects of shading stress during the reproductive stages on photosynthetic physiology and yield characteristics of peanut (Arachis hypogaea Linn.)[J]. Journal of Integrative Agriculture, 2021, 20 (5): 1250- 1265.

DOI

57
Ali Raza M , Cui L , Khan I , et al. Compact maize canopy improves radiation use efficiency and grain yield of maize/soybean relay intercropping system[J]. Environmental Science and Pollution Research International, 2021, 28 (30): 41135- 41148.

DOI

58
Liu X D , Meng L B , Yin T J , et al. Maize/soybean intercrop over time has higher yield stability relative to matched monoculture under different nitrogen-application rates[J]. Field Crops Research, 2023, 301: 109015.

DOI

59
袁晓婷, 汤松, 罗凯, 等. 大豆玉米带状复合种植产量与效益分析: 基于全国16个示范省(市、区)的调查数据[J]. 四川农业大学学报, 2023, 41 (5): 834-841, 872.

60
Luo K , Xie C , Wang J , et al. Uniconazole, 6-benzyladenine, and diethyl aminoethyl hexanoate increase the yield of soybean by improving the photosynthetic efficiency and increasing grain filling in maize-soybean relay strip inter-cropping system[J]. Journal of Plant Growth Regulation, 2021, 40 (5): 1869- 1880.

DOI

61
周颖, 陈平, 杜青, 等. 不同间套作模式对大豆农艺性状及系统经济效益的影响[J]. 四川农业大学学报, 2018, 36 (6): 745- 750.

62
Sun M , Li S Z , Yang W Z , et al. Commercial genetically modified corn and soybean are poised following pilot planting in China[J]. Molecular Plant, 2024, 17 (4): 519- 521.

DOI

63
Darini M T , Widata S , Setiawati E , et al. Evaluation system of intercropping functional food sweet corn and vegetable soybean in different planting density and compound fertilizers dosages[J]. IOP Conference Series: Earth and Environmental Science, 2023, 1228 (1): 012027.

DOI

64
黄方华. 玉米大豆带状复合种植技术的优势、成效及发展建议[J]. 种子科技, 2024, 42 (6): 122- 124.

65
Undie U L , Uwah D F , Attoe E E . Effect of intercropping and crop arrangement on yield and productivity of late season maize/soybean mixtures in the humid environment of south southern Nigeria[J]. Journal of Agricultural Science, 2012, 4 (4): 37- 38.

66
Zhao Y L , Guo S H , Zhu X Q , et al. How maize-legume intercropping and rotation contribute to food security and environmental sustainability[J]. Journal of Cleaner Production, 2024, 434: 140150.

DOI

67
Rusinamhodzi L , Corbeels M , Nyamangara J , et al. Maize-grain legume intercropping is an attractive option for ecological intensification that reduces climatic risk for small- holder farmers in central Mozambique[J]. Field Crops Research, 2012, 136: 12- 22.

DOI

68
Gwenambira-Mwika C P , Snapp S S , Chikowo R . Broadening farmer options through legume rotational and intercrop diversity in maize-based cropping systems of central Malawi[J]. Field Crops Research, 2021, 270: 108225.

DOI

69
Nassary E K , Baijukya F , Ndakidemi P A . Assessing the productivity of common bean in intercrop with maize across agro-ecological zones of smallholder farms in the northern Highlands of Tanzania[J]. Agriculture, 2020, 10 (4): 117.

DOI

70
Du J B , Han T F , Gai J Y , et al. Maize-soybean strip inter-cropping: Achieved a balance between high productivity and sustainability[J]. Journal of Integrative Agriculture, 2018, 17 (4): 747- 754.

DOI

71
Shukla D K , Singh V K , Bhushan C , et al. Influence of phosphorus fertilization on productivity and biological sustain-ability of chickpea (Cicer arietinum)+coriander (Coriandrum sativum) intercropping system[J]. Indian Journal of Agronomy, 2019, 64 (3): 315- 319.

Outlines

/