Papers

Review on technological innovation and typical safety evaluation of traction battery

  • Fang WANG , 1 ,
  • Ce HAN 2 ,
  • Pengfei YAN 2 ,
  • Weina WANG 1 ,
  • Xiaole MA 1 ,
  • Shiqiang LIU 1
Expand
  • 1. China Automotive Technology and Research Center Co., Ltd., Tianjin 300300, China
  • 2. CATARC New Energy Vehicle Research and Inspection Center(Tianjin) Co., Ltd., Tianjin 300300, China

Received date: 2025-03-05

  Online published: 2025-06-26

Copyright

All rights reserved. Unauthorized reproduction is prohibited.

Cite this article

Fang WANG , Ce HAN , Pengfei YAN , Weina WANG , Xiaole MA , Shiqiang LIU . Review on technological innovation and typical safety evaluation of traction battery[J]. Science & Technology Review, 2025 , 43(11) : 87 -96 . DOI: 10.3981/j.issn.1000-7857.2025.03.00015

1
王芳, 王峥, 林春景, 等. 新能源汽车动力电池安全失效潜在原因分析[J]. 储能科学与技术, 2022, 11(5): 1411- 1418.

2
Malozyomov B V, Martyushev N V, Kukartsev V V, et al. Determination of the performance characteristics of a traction battery in an electric vehicle[J]. World Electric Vehicle Journal, 2024, 15(2): 64.

DOI

3
王震坡, 袁昌贵, 李晓宇. 新能源汽车动力电池安全管理技术挑战与发展趋势分析[J]. 汽车工程, 2021, 42(12): 1606- 1620.

4
刘渺然, 翟旭亮, 吕宁, 等. 动力电池集成关键技术研究现状及展望[J]. 汽车文摘, 2023(4): 1- 6.

5
杨续来, 袁帅帅, 杨文静, 等. 锂离子动力电池能量密度特性研究进展[J]. 机械工程学报, 2023, 59(6): 239- 254.

6
Li W, Xue Y, Feng X, et al. Enhancing understanding of particle emissions from lithium-ion traction batteries during thermal runaway: An overview and challenges[J]. ETransportation, 2024, 22: 100354.

DOI

7
Jaguemont J, Bardé F. A critical review of lithium-ion battery safety testing and standards[J]. Applied Thermal Engineering, 2023, 231: 121014.

DOI

8
杨世春, 卢宇, 周思达, 等. 车用动力电池标准体系研究与分析[J]. 机械工程学报, 2023, 59(22): 3- 19.

9
Hu Z, Lei B, Li Y, et al. Comparative study on safety test and evaluation methods of lithium-ion batteries for energy storage[J]. Energy Storage Science and Technology, 2022, 11(5): 1650- 1656.

10
Hu G, Huang P, Bai Z, et al. Comprehensively analysis the failure evolution and safety evaluation of automotive lithium ion battery[J]. ETransportation, 2021, 10: 100140.

DOI

11
Yi X, Hu L, Liu S, et al. A review on safety management strategies: Theory and practical application of lithium-ion power batteries[C]//Proceedings of the International Conference on Advances in Construction Machinery and Vehicle Engineering. Berlin: Springer, 2023: 149-158.

12
宗磊, 陈龙, 朱峰, 等. 多场景下动力电池安全特征参数的阈值测试与分析[J]. 储能科学与技术, 2023, 12(7): 2271- 2281.

13
黄红光, 王清泉, 曾勇. 面向实车应用的锂离子电池系统温度采集技术[J]. 新能源进展, 2024, 12(2): 193- 200.

14
Yang C. Running battery electric vehicles with extended range: Coupling cost and energy analysis[J]. Applied Energy, 2022, 306: 118116.

DOI

15
Yang C, Shi H J. Prospects of battery assembly for electric vehicles based on patent analysis[J]. International Journal of Low-Carbon Technologies, 2023, 18: 1134- 1139.

DOI

16
Lian Y, Ling H, Jiang L, et al. Development of cell to body technology towards high levels of integration, high strength and high stiffness[R]. Detroit, MI: SAE Technical Paper, 2023.

17
Chen S, Zhang G, Wu C, et al. Multi-objective optimization design for a double-direction liquid heating system-based Cell-to-Chassis battery module[J]. International Journal of Heat and Mass Transfer, 2022, 183: 122184.

DOI

18
于仲安, 陈可怡, 张军令, 等. 动力电池散热技术研究进展[J]. 电气工程学报, 2023, 17(4): 145- 162.

19
Pampel F, Pischinger S, Teuber M. A systematic comparison of the packing density of battery cell-to-pack concepts at different degrees of implementation[J]. Results in Engineering, 2022, 13: 100310.

DOI

20
Grebtsov D K, Kubasov M K, Bernatskii E R, et al. Electric vehicle battery technologies: Chemistry, architectures, safety, and management systems[J]. World Electric Vehicle Journal, 2024, 15(12): 568.

DOI

21
Sun L, Liu Y, Shao R, et al. Recent progress and future perspective on practical silicon anode-based lithium ion batteries[J]. Energy Storage Mater, 2022, 46: 482- 502.

DOI

22
Gu M, He Y, Zheng J, et al. Nanoscale silicon as anode for Li-ion batteries: The fundamentals, promises, and challenges[J]. Nano Energy, 2015, 17: 366- 383.

DOI

23
Franco G A, Yang N H, Liu R S. Silicon anode design for lithium-ion batteries: Progress and perspectives[J]. The Journal of Physical Chemistry C, 2017, 121(50): 27775- 27787.

DOI

24
Wang R, Cui W, Chu F, et al. Lithium metal anodes: Present and future[J]. Journal of Energy Chemistry, 2020, 48: 145- 159.

DOI

25
Lin D, Liu Y, Cui Y. Reviving the lithium metal anode for high-energy batteries[J]. Nature Nanotechnology, 2017, 12(3): 194- 206.

DOI

26
Fang C, Wang X, Meng Y S. Key issues hindering a practical lithium-metal anode[J]. Trends in Chemistry, 2019, 1(2): 152- 158.

DOI

27
Zhou K, Xie Q, Li B, et al. An in-depth understanding of the effect of aluminum doping in high-nickel cathodes for lithium-ion batteries[J]. Energy Storage Materials, 2021, 34: 229- 240.

DOI

28
Sheng H, Meng X H, Xiao D D, et al. An air-stable high-nickel cathode with reinforced electrochemical performance enabled by convertible amorphous Li2CO3 modification[J]. Advanced Materials, 2022, 34(12): 2108947.

DOI

29
Cui S L, Gao M Y, Li G R, et al. Insights into Li-rich Mn-based cathode materials with high capacity: From dimension to lattice to atom[J]. Advanced Energy Materials, 2022, 12(4): 2003885.

DOI

30
He W, Guo W, Wu H, et al. Challenges and recent advances in high capacity Li-rich cathode materials for high energy density lithium-ion batteries[J]. Advanced Materials, 2021, 33(50): 2005937.

DOI

31
Hao Z, Zhao Q, Tang J, et al. Functional separators towards the suppression of lithium dendrites for rechargeable high-energy batteries[J]. Materials Horizons, 2021, 8(1): 12- 32.

DOI

32
Huang Y, Yang H, Gao Y, et al. Mechanism and solutions of lithium dendrite growth in lithium metal batteries[J]. Materials Chemistry Frontiers, 2024, 8(5): 1282- 1299.

DOI

33
Song L, Zheng Y, Xiao Z, et al. Review on thermal runaway of lithium-ion batteries for electric vehicles[J]. Journal of Electronic Materials, 2022, 51(1): 30- 46.

DOI

34
Shahid S, Agelin-Chaab M. A review of thermal runaway prevention and mitigation strategies for lithium-ion batteries[J]. Energy Conversion and Management: X, 2022, 16: 100310.

DOI

35
李致远, 鲁锐华, 余庆华, 等. 动力电池热失控特征及防控技术研究分析[J]. 汽车工程, 2024, 46(1): 139- 150.

36
Gond R, Van Ekeren W, Mogensen R, et al. Non-flammable liquid electrolytes for safe batteries[J]. Mater Horiz, 2021, 8(11): 2913- 2928.

DOI

37
Fan X, Chen L, Borodin O, et al. Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries[J]. Nature Nanotechnology, 2018, 13(8): 715- 722.

DOI

38
Niu H, Wang L, Guan P, et al. Recent advances in application of ionic liquids in electrolyte of lithium ion batteries[J]. Journal of Energy Storage, 2021, 40: 102659.

DOI

39
Tang X, Lv S, Jiang K, et al. Recent development of ionic liquid-based electrolytes in lithium-ion batteries[J]. Journal of Power Sources, 2022, 542: 231792.

DOI

40
Yu X, Chen R, Gan L, et al. Battery safety: From lithium-ion to solid-state batteries[J]. Engineering, 2023, 21: 9- 14.

DOI

41
Guo Y, Wu S, He Y-B, et al. Solid-state lithium batteries: Safety and prospects[J]. eScience, 2022, 2(2): 138- 163.

DOI

42
Bates A M, Preger Y, Torres-Castro L, et al. Are solid-state batteries safer than lithium-ion batteries?[J]. Joule, 2022, 6(4): 742- 755.

DOI

43
Wu H, Zhang X, Wang C, et al. Experimental study on aerogel passive thermal control method for cylindrical lithium-ion batteries at low temperature[J]. Applied Thermal Engineering, 2020, 169: 114946.

DOI

44
Gao Z, Rao S, Zhang T, et al. Design strategies of flame-retardant additives for lithium ion electrolyte[J]. Journal of Electrochemical Energy Conversion and Storage, 2022, 19(3): 030910.

DOI

45
Liu J, Li X, Huang J, et al. Additive-guided solvation-regulated flame-retardant electrolyte enables high-voltage lithium metal batteries with robust electrode electrolyte interphases[J]. Advanced Functional Materials, 2024, 34(16): 2312762.

DOI

46
Wang A, Jiang J, Liu Y, et al. Research progress of aerogel used in lithium-ion power batteries[J]. Journal of Loss Prevention in the Process Industries, 2024, 92: 105433.

DOI

47
Singh A K, Kumar K, Choudhury U, et al. Applications of artificial intelligence and cell balancing techniques for battery management system (BMS) in electric vehicles: A comprehensive review[J]. Process Safety and Environmental Protection, 2024, 191: 2247- 2265.

DOI

48
Gabbar H A, Othman A M, Abdussami M R. Review of battery management systems (BMS) development and industrial standards[J]. Technologies, 2021, 9(2): 28.

DOI

49
See K, Wang G, Zhang Y, et al. Critical review and functional safety of a battery management system for large-scale lithium-ion battery pack technologies[J]. International Journal of Coal Science & Technology, 2022, 9(1): 36.

50
Weiss M, Ruess R, Kasnatscheew J, et al. Fast charging of lithium-ion batteries: A review of materials aspects[J]. Advanced Energy Materials, 2021, 11(33): 2101126.

DOI

51
Chen K H, Goel V, Namkoong M J, et al. Enabling 6C fast charging of Li-ion batteries with graphite/hard carbon hybrid anodes[J]. Advanced Energy Materials, 2021, 11(5): 2003336.

DOI

52
An J, Zhang H, Qi L, et al. Self-expanding ion-transport channels on anodes for fast-charging lithium-ion batteries[J]. Angewandte Chemie, 2022, 134(7): e202113313.

DOI

53
Rivera S, Kouro S, Vazquez S, et al. Electric vehicle charging infrastructure: From grid to battery[J]. IEEE Industrial Electronics Magazine, 2021, 15(2): 37- 51.

DOI

54
Sieg J, Schmid A U, Rau L, et al. Fast-charging capability of lithium-ion cells: Influence of electrode aging and electrolyte consumption[J]. Applied Energy, 2022, 305: 117747.

DOI

55
Abdel-Monem M, Trad K, Omar N, et al. Influence analysis of static and dynamic fast-charging current profiles on ageing performance of commercial lithium-ion batteries[J]. Energy, 2017, 120: 179- 191.

DOI

56
Konz Z M, Mcshane E J, Mccloskey B D. Detecting the onset of lithium plating and monitoring fast charging performance with voltage relaxation[J]. ACS Energy Letters, 2020, 5(6): 1750- 1757.

DOI

57
山彤欣, 王震坡, 洪吉超, 等. 新能源汽车动力电池"机械滥用-热失控"及其安全防控技术综述[J]. 机械工程学报, 2022, 58(14): 252- 275.

58
李志杰, 陈吉清, 兰凤崇, 等. 机械外力下动力电池包的系统安全性分析与评价[J]. 机械工程学报, 2019, 55(12): 137- 148.

59
黄芦, 兰凤崇, 陈吉清. 电动汽车电池包底部锥状物冲击下的力学响应分析[J]. 重庆理工大学学报(自然科学), 2021, 35(5): 9- 17.

60
Yan P, Wang F, Ma T, et al. Research on bottom collision of battery pack based on the first force point[R]. Detroit, MI: SAE Technical Paper, 2024.

61
Feng X, Ouyang M, Liu X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Mater, 2018, 10: 246- 267.

DOI

62
Song L, Huang Z, Mei W, et al. Thermal runaway propagation behavior and energy flow distribution analysis of 280 Ah LiFePO4 battery[J]. Process Safety and Environmental Protection, 2023, 170: 1066- 1078.

DOI

63
许磊, 郑伟, 赵兵. 车用动力电池存储中热失控预警防控技术研究[J]. 消防科学与技术, 2024, 43(5): 743- 749.

64
卢家欢, 徐宇航, 邓棋瀚, 等. 动力电池数字孪生体设计及其全寿命电行为仿真[J]. 西南大学学报(自然科学版), 2024, 46(12): 24- 30.

65
陶正德, 张志超, 郭昌梁. 基于电化学-热耦合模型的动力电池逆向仿真建模与参数辨识[J]. 储能科学与技术, 2024, 13(6): 2022- 2029.

66
马骋浩, 庄梓傲, 邢伯斌, 等. 数据驱动的动力电池包侧面柱碰撞安全性预测方法[J]. 爆炸与冲击, 2025, 45(2): 134- 149.

67
吴昶, 徐晓美, 彭骏峰, 等. 无模组动力电池包振动特性研究[J]. 噪声与振动控制, 2024, 44(3): 202- 208.

Outlines

/