Current progress and future development trends of deep-sea exploration technology
Received date: 2025-04-09
Revised date: 2025-06-03
Online published: 2025-07-03
Copyright
Deep-sea exploration is a key technology for developing marine resources, studying the evolution of the Earth, and protecting the Earth's ecosystem. This paper reviews the main progress of deep-sea exploration technology in the past seven years (2019–2025), including the fields of submersibles, sensors, communication, energy, etc., and looks ahead to the development trends in the next 5~10 years. Firstly, the importance and challenges of deep-sea exploration are introduced. Then, the current status of technologies in various aspects such as deep-sea submersibles, sensors and observations, sampling and analysis, communication and navigation, energy, as well as big data and artificial intelligence are described in detail. The analysis shows that intelligentization, long endurance, and in-situ experimental technologies will become the core directions, but the adaptability to high-pressure environments, energy supply, and data transmission remain the main bottlenecks. Subsequently, the future development trends such as intelligentization and autonomy, long endurance and energy innovation, and the cost revolution are discussed. It is expected that this paper will play a certain guiding role in promoting the sustainable development of deep-sea exploration technology.
Weicheng CUI , Xinhao SHAO . Current progress and future development trends of deep-sea exploration technology[J]. Science & Technology Review, 2025 , 43(12) : 38 -54 . DOI: 10.3981/j.issn.1000-7857.2025.04.00040
本方向的研究得到国家重点研发计划项目“仿蝠鲼多模态行为新概念水动力设计研究(2022YFC2805201)”和西湖大学校立科研基金项目“复杂系统理论及海洋技术研究(WU2024A001)”的资助,后一项目经费由上海鼎衡集团创始人、董事长李多珠先生捐赠。特向李先生和他们的公司员工表示由衷的感谢!
1 |
|
2 |
|
3 |
|
4 |
|
5 |
Surya S, Elakya R, Ramamurthy S, et al. The future of deep sea technologies: Opportunities and challenges[M]//Technological Advancements for Deep Sea Ecosystem Conservation and Exploration. Hershey: IGI Global, 2024: 267-278.
|
6 |
|
7 |
|
8 |
|
9 |
|
10 |
|
11 |
|
12 |
|
13 |
|
14 |
|
15 |
|
16 |
|
17 |
|
18 |
|
19 |
|
20 |
|
21 |
|
22 |
刘相知, 崔维成. 潜空两栖航行器的综述与分析[J]. 中国舰船研究, 2019, 14(增刊2): 1- 14.
|
23 |
|
24 |
|
25 |
Ding K, Zhang Z, Seyfried W E, et al. Integrated in situ chemical sensor system for submersible deployment at deep-sea hydrothermal vents[C]//Proceedings of OCEANS 2006. Piscataway, NJ: IEEE, 2006: 1-6.
|
26 |
|
27 |
|
28 |
|
29 |
|
30 |
|
31 |
|
32 |
|
33 |
|
34 |
|
35 |
|
36 |
|
37 |
|
38 |
|
39 |
|
40 |
|
41 |
|
42 |
|
43 |
|
44 |
|
45 |
|
46 |
|
47 |
|
48 |
Petersen S, Hannington M, Krätschell A. Technology developments in the exploration and evaluation of deep-sea mineral resources[J]. Annales Des Mines - Responsabilité et Environnement, 2017, N° 85(1): 14-18.
|
49 |
|
50 |
|
51 |
|
52 |
|
53 |
|
54 |
Stevens B, Jolly C, Jolliffe J. A new era of digitalisation for ocean sustainability?[EB/OL]. [2025-03-20]. https://www.proquest.com/openview/eee78efcfd8187524277bab0280e768d/1?pqorigsite=gscholar&cbl=6245952&casa_token=bGxoI-IYe3tUAAAAA:2EX_9hxU5c-KdT4LBrtxrvqbLsBVTpa3w8-6xheHmDni3EKTBkDEpu8-eNKdKKLJztkVzOohxNk.
|
55 |
|
56 |
|
57 |
|
58 |
|
59 |
|
60 |
|
61 |
|
62 |
|
63 |
|
64 |
|
65 |
|
66 |
|
67 |
|
68 |
|
69 |
|
70 |
|
71 |
|
72 |
|
73 |
|
74 |
|
75 |
|
76 |
|
77 |
|
78 |
|
79 |
|
80 |
|
81 |
|
82 |
|
83 |
|
84 |
Mohamed I R, Shehata A S, El-Maghlany W M, et al. Experiment study on harvesting ocean thermal energy using phase change material for autonomous underwater vehicle powering[C]//Proceedings of AIP Conference Proceedings. New York: AIP Publishing, 2023.
|
85 |
LiVecchi A, Copping A, Jenne S, et al. Powering the Blue Economy: Exploring Opportunities for Marine Renewable Energy in Various Maritime[R]. Golden: National Renewable Energy Laboratory (NREL), 2019.
|
86 |
|
87 |
|
88 |
|
89 |
|
90 |
|
91 |
|
92 |
|
93 |
|
94 |
|
95 |
|
96 |
|
97 |
|
98 |
|
99 |
|
100 |
Vergara C R, Theodoropoulos G, Bahsoon R, et al. Federated digital twins as an enabling technology for collaborative decision-making[C]//Proceedings of the 38th ACM SIGSIM Conference on Principles of Advanced Discrete Simulation. New York: ACM, 2024.
|
101 |
Hu Z Z, Liu Y, Zhang J M. The application and development of digital twin in the marine domain; proceedings of the ocean[C]. Beijing: Tsinghua University Press, 2025.
|
102 |
|
103 |
|
104 |
|
105 |
|
106 |
|
107 |
|
108 |
|
109 |
Scientific Ocean Drilling: Accomplishments and Challenges[M]. Washington, D. C. : National Academies Press, 2011.
|
110 |
|
111 |
|
112 |
|
113 |
Li X, Fu B, Hu S, et al. China's sea floor observatory network R&D: Current status and prospects[C]//Proceedings of Oceans - Yeosu. Piscataway, NJ: IEEE, 2012: 1-6.
|
114 |
Stojanovic M. Underwater acoustic communications[C]// Proceedings of Electro/International 1995. Piscataway, NJ: IEEE, 1995: 435-440.
|
115 |
|
116 |
|
117 |
|
118 |
|
119 |
Luick J. Physical Oceanographic Assessment of the Nautilus Environmental Impact Statement for the Solwara 1 Project[R]. Adelaide: Austides Consulting for Deep Sea Mining Campaign, 2012.
|
120 |
Scott S D. The dawning of deep sea mining of metallic sulfides: the geologic perspective[C]//ISOPE Ocean Mining and Gas Hydrates Symposium. Denver: ISOPE, 2007.
|
121 |
|
/
〈 |
|
〉 |