Exclusive

Current progress and future development trends of deep-sea exploration technology

  • Weicheng CUI ,
  • Xinhao SHAO
Expand
  • Department of Electronic and Information Engineering, School of Engineering, Westlake University, Hangzhou 310030, China

Received date: 2025-04-09

  Revised date: 2025-06-03

  Online published: 2025-07-03

Copyright

All rights reserved. Unauthorized reproduction is prohibited.

Abstract

Deep-sea exploration is a key technology for developing marine resources, studying the evolution of the Earth, and protecting the Earth's ecosystem. This paper reviews the main progress of deep-sea exploration technology in the past seven years (2019–2025), including the fields of submersibles, sensors, communication, energy, etc., and looks ahead to the development trends in the next 5~10 years. Firstly, the importance and challenges of deep-sea exploration are introduced. Then, the current status of technologies in various aspects such as deep-sea submersibles, sensors and observations, sampling and analysis, communication and navigation, energy, as well as big data and artificial intelligence are described in detail. The analysis shows that intelligentization, long endurance, and in-situ experimental technologies will become the core directions, but the adaptability to high-pressure environments, energy supply, and data transmission remain the main bottlenecks. Subsequently, the future development trends such as intelligentization and autonomy, long endurance and energy innovation, and the cost revolution are discussed. It is expected that this paper will play a certain guiding role in promoting the sustainable development of deep-sea exploration technology.

Cite this article

Weicheng CUI , Xinhao SHAO . Current progress and future development trends of deep-sea exploration technology[J]. Science & Technology Review, 2025 , 43(12) : 38 -54 . DOI: 10.3981/j.issn.1000-7857.2025.04.00040

本方向的研究得到国家重点研发计划项目“仿蝠鲼多模态行为新概念水动力设计研究(2022YFC2805201)”和西湖大学校立科研基金项目“复杂系统理论及海洋技术研究(WU2024A001)”的资助,后一项目经费由上海鼎衡集团创始人、董事长李多珠先生捐赠。特向李先生和他们的公司员工表示由衷的感谢!

1
Hein J R, Koschinsky A, Kuhn T. Deep-ocean polymetallic nodules as a resource for critical materials[J]. Nature Reviews Earth & Environment, 2020, 1: 158- 169.

2
Piccard J, Dietz R S. Seven miles down: The story of the Bathyscaph Trieste[M]. London: Longmans, 1961.

3
Levin L A, Bett B J, Gates A R, et al. Global observing needs in the deep ocean[J]. Frontiers in Marine Science, 2019, 6: 241.

DOI

4
Liang J Z, Feng J C, Zhang S, et al. Role of deep-sea equipment in promoting the forefront of studies on life in extreme environments[J]. iScience, 2021, 24(11): 103299.

DOI

5
Surya S, Elakya R, Ramamurthy S, et al. The future of deep sea technologies: Opportunities and challenges[M]//Technological Advancements for Deep Sea Ecosystem Conservation and Exploration. Hershey: IGI Global, 2024: 267-278.

6
Peng X T, Zhang W J, Schnabel K, et al. Unveiling the mysteries of the Kermadec trench[J]. The Innovation, 2023, 4(1): 100367.

DOI

7
Liu Y Y, Xue J F, Yang B, et al. The acoustic system of the Fendouzhe HOV[J]. Sensors, 2021, 21(22): 7478.

DOI

8
Fletcher B, Bowen A, Yoerger D R, et al. Journey to the challenger deep: 50 years later with the Nereus hybrid remotely operated vehicle[J]. Marine Technology Society Journal, 2009, 43(5): 65- 76.

DOI

9
Jiang Z, Lu B, Wang B, et al. A prototype design and sea trials of an 11000 m autonomous and remotely-operated vehicle dream chaser[J]. Journal of Marine Science and Engineering, 2022, 10(6): 812.

DOI

10
Wang J, Tang Y G, Li S, et al. The Haidou-1 hybrid underwater vehicle for the Mariana Trench science exploration to 10, 908 m depth[J]. Journal of Field Robotics, 2024, 41(4): 1054- 1079.

DOI

11
Chen H, Li W K, Cui W C, et al. Multi-objective multidisciplinary design optimization of a robotic fish system[J]. Jour-nal of Marine Science and Engineering, 2021, 9(5): 478.

DOI

12
Li W K, Chen H, Cui W C, et al. Multi-objective evolutionary design of central pattern generator network for biomimetic robotic fish[J]. Complex & Intelligent Systems, 2023, 9(2): 1707- 1727.

13
Cui X Y, Sun B A, Zhu Y, et al. Enhancing efficiency and propulsion in bio-mimetic robotic fish through end-to-end deep reinforcement learning[J]. Physics of Fluids, 2024, 36(3): 031910.

DOI

14
Li G R, Chen X P, Zhou F H, et al. Self-powered soft robot in the Mariana trench[J]. Nature, 2021, 591(7848): 66- 71.

DOI

15
Liu Q M, Chen H, Wang Z H, et al. A Manta ray robot with soft material based flapping wing[J]. Journal of Marine Science and Engineering, 2022, 10(7): 962.

DOI

16
Liu Q M, Chen H, Guo P M, et al. Unified scheme design and control optimization of flapping wing for next-generation Manta ray robot[J]. Ocean Engineering, 2024, 309: 118487.

DOI

17
Sun B A, Li W K, Wang Z Y, et al. Recent progress in modeling and control of bio-inspired fish robots[J]. Journal of Marine Science and Engineering, 2022, 10(6): 773.

DOI

18
Li J Y, Li W K, Liu Q M, et al. Current status and technical challenges in the development of biomimetic robotic fish- type submersible[J]. Ocean-Land-Atmosphere Research, 2024, 3: 36.

DOI

19
Li G R, Wong T W, Shih B, et al. Bioinspired soft robots for deep-sea exploration[J]. Nature Communications, 2023, 14(1): 7097.

DOI

20
Luo B, Cui W C, Li W. The platform for remote driving of a biomimetic propulsor and measurement of longitudinal and lateral forces generated by the propulsor[J]. Sensors and Actuators A: Physical, 2024, 369: 115118.

DOI

21
Yang G Z, Bellingham J, Dupont P E, et al. The grand challenges of Science robotics[J]. Science Robotics, 2018, 3(14): eaar7650.

DOI

22
刘相知, 崔维成. 潜空两栖航行器的综述与分析[J]. 中国舰船研究, 2019, 14(增刊2): 1- 14.

23
Wang Z Y, Luo B, Cui W C, et al. Design of multimodal transformable wheels for amphibious robotic vehicles[J]. Sensors and Actuators A: Physical, 2024, 379: 115952.

DOI

24
German C R, Yoerger D R, Jakuba M, et al. Hydrothermal exploration with the autonomous benthic explorer[J]. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 2008, 55(2): 203- 219.

DOI

25
Ding K, Zhang Z, Seyfried W E, et al. Integrated in situ chemical sensor system for submersible deployment at deep-sea hydrothermal vents[C]//Proceedings of OCEANS 2006. Piscataway, NJ: IEEE, 2006: 1-6.

26
Cai Z, Mur Luis A J, Han J W, et al. A multi-channel chemical sensor and its application in detecting hydrothermal vents[J]. Acta Oceanologica Sinica, 2019, 38(9): 128- 134.

DOI

27
Gröger J P, Cisewski B, Badri-Hoeher S, et al. Development and operation of a novel non-invasive opto-acoustic underwater fish observatory in Kiel Bight, Southwestern Baltic Sea[J]. Frontiers in Marine Science, 2024, 11: 1425259.

DOI

28
Liu Y Q, Lu H L, Cui Y. A review of marine in situ sensors and biosensors[J]. Journal of Marine Science and Engineering, 2023, 11(7): 1469.

DOI

29
Pizarro O, Singh H. Toward large-area mosaicing for under-water scientific applications[J]. IEEE Journal of Oceanic Engineering, 2003, 28(4): 651- 672.

DOI

30
Gehrmann R A S, Haroon A, Morton M, et al. Seafloor massive sulphide exploration using deep-towed controlled source electromagnetics: Navigational uncertaintiesFree[J]. Geophysical Journal International, 2020, 220(2): 1215- 1227.

31
Liang H L, Wang J, Zhang L H, et al. Review of optical fiber sensors for temperature, salinity, and pressure sensing and measurement in seawater[J]. Sensors, 2022, 22(14): 5363.

DOI

32
Sun K, Wang Z H, Liu Q M, et al. Low-cost distributed optical waveguide shape sensor based on WTDM applied in bionics[J]. Sensors, 2023, 23(17): 7334.

DOI

33
Peng R H, Han B, Hu X Y. Exploration of seafloor massive sulfide deposits with fixed-offset marine controlled source electromagnetic method: Numerical simulations and the effects of electrical anisotropy[J]. Minerals, 2020, 10(5): 457.

DOI

34
Tsabaris C, Androulakaki E G, Alexakis S, et al. An in situ gammaray spectrometer for the deep ocean[J]. Applied Radiation and Isotopes, 2018, 142: 120- 127.

DOI

35
Smith K L, Huffard C L, Sherman A D, et al. Decadal change in sediment community oxygen consumption in the abyssal northeast Pacific[J]. Aquatic Geochemistry, 2016, 22(5): 401- 417.

36
Giddens J, Turchik A, Goodell W, et al. The national geographic society deep-sea camera system: A low-cost remote video survey instrument to advance biodiversity observation in the deep ocean[J]. Frontiers in Marine Science, 2021, 7: 601411.

DOI

37
Williams K, Goddard P, Wilborn R, et al. Fish behavior in response to an approaching underwater camera[J]. Fisheries Research, 2023, 268: 106823.

DOI

38
Aguzzi J, Thomsen L, Flögel S, et al. New technologies for monitoring and upscaling marine ecosystem restoration in deep-sea environments[J]. Engineering, 2024, 34: 195- 211.

DOI

39
Fujiwara Y, Tsuchida S, Kawato M, et al. Detection of the largest deep-sea-endemic teleost fish at depths of over 2000 m through a combination of eDNA metabarcoding and baited camera observations[J]. Frontiers in Marine Science, 2022, 9: 945758.

DOI

40
Jamieson A J, Stewart H A, Weston J N J, et al. Hadal biodiversity, habitats and potential chemosynthesis in the Java trench, eastern Indian ocean[J]. Frontiers in Marine Science, 2022, 9: 856992.

DOI

41
Jamieson A J, Vecchione M. First in situ observation of Cephalopoda at hadal depths (Octopoda: Opisthoteuthidae: Grimpoteuthis sp.[J]. Marine Biology, 2020, 167(6): 82.

DOI

42
Hannington M, Jamieson J, Monecke T, et al. The abundance of seafloor massive sulfide deposits[J]. Geology, 2011, 39(12): 1155- 1158.

DOI

43
Alevizos E, Huvenne V A I, Schoening T, et al. Linkages between sediment thickness, geomorphology and Mn nodule occurrence: New evidence from AUV geophysical mapping in the Clarion-Clipperton Zone[J]. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 2022, 179: 103645.

DOI

44
Kim J, Son S K, Kim D, et al. Discovery of active hydrothermal vent fields along the central Indian ridge, 8–12°S[J]. Geochemistry, Geophysics, Geosystems, 2020, 21(8): e2020GC009058.

DOI

45
Yang X H, Tao C H, Liao S L. Abundant off-axis hydrothermal activity in the 29–30 ridge segment of the Southwest Indian Ridge: Evidence from ferromanganese crusts[J]. Frontiers in Earth Science, 2023, 11: 1176458.

DOI

46
Peukert A, Schoening T, Alevizos E, et al. Understanding Mn-nodule distribution and evaluation of related deep-sea mining impacts using AUV-based hydroacoustic and optical data[J]. Biogeosciences, 2018, 15(8): 2525- 2549.

DOI

47
Lefaible N, Macheriotou L, Pape E, et al. Industrial mining trial for polymetallic nodules in the Clarion-Clipperton Zone indicates complex and variable disturbances of meiofaunal communities[J]. Frontiers in Marine Science, 2024, 11: 1380530.

DOI

48
Petersen S, Hannington M, Krätschell A. Technology developments in the exploration and evaluation of deep-sea mineral resources[J]. Annales Des Mines - Responsabilité et Environnement, 2017, N° 85(1): 14-18.

49
Du K, Xi W Q, Huang S, et al. Deep-sea mineral resource mining: A historical review, developmental progress, and insights[J]. Mining, Metallurgy & Exploration, 2024, 41(1): 173- 192.

50
Smith L M, Cimoli L, LaScala-Gruenewald D, et al. The deep ocean observing strategy: Addressing global challenges in the deep sea through collaboration[J]. Marine Technology Society Journal, 2022, 56(3): 50- 66.

DOI

51
Du Z F, Zhang X, Lian C, et al. The development and applications of a controllable lander for in-situ, long-term observation of deep sea chemosynthetic communities[J]. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 2023, 193: 103960.

DOI

52
Muir L, Roman C, Casagrande D, et al. The deep autonomous profiler (DAP), a platform for hadal profiling and water sample collection[J]. Journal of atmospheric and oceanic technology, 2021, 38(10): 1833- 1845.

53
Wang Q, Qiu Z R, Yang S B, et al. Design and experimental research of a novel deep-sea self-sustaining profiling float for observing the northeast off the Luzon Island[J]. Scientific Reports, 2022, 12(1): 18885.

DOI

54

55
Matabos M, Barreyre T, Juniper S K, et al. Integrating multi-disciplinary observations in vent environments (IMOVE): Decadal progress in deep-sea observatories at hydrothermal vents[J]. Frontiers in Marine Science, 2022, 9: 866422.

DOI

56
Aguzzi J, Flögel S, Marini S, et al. Developing technological synergies between deep-sea and space research[J]. Elementa: Science of the Anthropocene, 2022, 10(1): 00064.

57
Mao H, Wu Y, Yin J, et al. Development Status and prospect of marine environmental security technology[J]. Bulletin of Chinese Academy of Sciences (Chinese Version), 2022, 37(7): 870- 80.

58
Dong C, Chen D K, Wang D X, et al. Intelligent swift ocean observing system[J]. Ocean-Land-Atmosphere Research, 2023, 2: 22.

DOI

59
He S D, Peng Y D, Jin Y P, et al. Review and analysis of key techniques in marine sediment sampling[J]. Chinese Journal of Mechanical Engineering, 2020, 33(1): 66.

DOI

60
Liu G P, Jin Y P, Peng Y D, et al. A deep-sea sediment sampling system: Design, analysis and experimental verification[J]. Journal of Pressure Vessel Technology, 2022, 144(2): 021301.

DOI

61
He S D, Qiu S W, Tang W B, et al. A novel submersible- mounted sediment pressure-retaining sampler at full ocean depth[J]. Frontiers in Marine Science, 2023, 10: 1154269.

DOI

62
Wu S J, Chen Z H, Wang S, et al. A review of deep-seawater samplers: Principles, applications, performance, and trends[J]. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 2024, 213: 104401.

DOI

63
Wang H, Chen J W, Zhou Q X, et al. Isobaric sampling apparatus and key techniques for deep sea macro-organisms: A brief review[J]. Frontiers in Marine Science, 2022, 9: 1071940.

DOI

64
Liu G P, Jin Y P, Peng Y D, et al. Design of a full-ocean- depth macroorganism pressure-retaining sampler and fluid simulation of the sampling process[J]. Journal of Marine Science and Engineering, 2022, 10(12): 2007.

DOI

65
Mazzeo A, Aguzzi J, Calisti M, et al. Marine robotics for deep-sea specimen collection: A systematic review of under-water grippers[J]. Sensors, 2022, 22(2): 648.

DOI

66
Wirsen C O, Molyneaux S J. A study of deep-sea natural microbial populations and barophilic pure cultures using a high-pressure chemostat[J]. Applied and Environmental Microbiology, 1999, 65(12): 5314- 5321.

DOI

67
Eloe E A, Malfatti F, Gutierrez J, et al. Isolation and characterization of a psychropiezophilic alphaproteobacterium[J]. Applied and Environmental Microbiology, 2011, 77(22): 8145- 8153.

DOI

68
Cario A, Larzillière M, Nguyen O, et al. High-pressure microfluidics for ultra-fast microbial phenotyping[J]. Frontiers in Microbiology, 2022, 13: 866681.

DOI

69
Alcolombri U, Pioli R, Stocker R, et al. Single-cell stable isotope probing in microbial ecology[J]. ISME Communications, 2022, 2(1): 55.

70
Zhang R Y, Wang Y R, Liu R L, et al. Metagenomic characterization of a novel non-ammonia-oxidizing Thaumarchaeota from hadal sediment[J]. Microbiome, 2024, 12(1): 7.

71
Wannicke N, Frindte K, Gust G, et al. Measuring bacterial activity and community composition at high hydrostatic pressure using a novel experimental approach: A pilot study[J]. FEMS Microbiology Ecology, 2015, 91(5): fiv036.

72
Herndl G J, Bayer B, Baltar F, et al. Prokaryotic life in the deep ocean's water column[J]. Annual Review of Marine Science, 2023, 15: 461- 483.

73
Song A, Stojanovic M, Chitre M. Editorial underwater acoustic communications: Where we stand and what is next?[J]. IEEE Journal of Oceanic Engineering, 2019, 44(1): 1- 6.

74
Tang N Z, Zeng Q, Luo D Y, et al. Research on development and application of underwater acoustic communication system[J]. Journal of Physics: Conference Series, 2020, 1617(1): 012036.

75
Islam K Y, Ahmad I, Habibi D, et al. A survey on energy efficiency in underwater wireless communications[J]. Journal of Network and Computer Applications, 2022, 198: 103295.

76
Zhang X B, Sun H X, Kaneko A. Editorial: Ocean observation based on underwater acoustic technology[J]. Frontiers in Marine Science, 2023, 10: 1212840.

77
Kim K, Ura T. Navigation strategies of a cruising AUV for near-bottom survey of a steep terrain[J]. IFAC-Papers-OnLine, 2016, 49(15): 75- 80.

78
Zhang X, He B, Mu P C, et al. Hybrid model navigation method for autonomous underwater vehicle[J]. Ocean Engineering, 2022, 261: 112027.

79
Christensen L, de Gea Fernández J, Hildebrandt M, et al. Recent advances in AI for navigation and control of under-water robots[J]. Current Robotics Reports, 2022, 3(4): 165- 175.

80
Mohsan S A H, Li Y L, Sadiq M, et al. Recent advances, future trends, applications and challenges of Internet of underwater things (IoUT): A comprehensive review[J]. Journal of Marine Science and Engineering, 2023, 11(1): 124.

81
Zhao Y H, Li N, Xie K Y, et al. Manufacturing of lithium battery toward deep-sea environment[J]. International Journal of Extreme Manufacturing, 2025, 7(2): 022009.

82
Jin L C, Cui W C. On technical issues for underwater charging of robotic fish schools using ocean renewable energy[J]. Ships and Offshore Structures, 2024, 19(9): 1465- 1475.

83
Zhang S W, Deng Z D. Editorial: Deep-sea observation equipment and exploration technology[J]. Frontiers in Marine Science, 2023, 10: 1287578.

84
Mohamed I R, Shehata A S, El-Maghlany W M, et al. Experiment study on harvesting ocean thermal energy using phase change material for autonomous underwater vehicle powering[C]//Proceedings of AIP Conference Proceedings. New York: AIP Publishing, 2023.

85
LiVecchi A, Copping A, Jenne S, et al. Powering the Blue Economy: Exploring Opportunities for Marine Renewable Energy in Various Maritime[R]. Golden: National Renewable Energy Laboratory (NREL), 2019.

86
Song C H, Zhu X, Wang M L, et al. Recent advances in ocean energy harvesting based on triboelectric nanogenerators[J]. Sustainable Energy Technologies and Assessments, 2022, 53: 102767.

87
Piechaud N, Hunt C, Culverhouse P F, et al. Automated identification of benthic epifauna with computer vision[J]. Marine Ecology Progress Series, 2019, 615: 15- 30.

88
Lopez-Vazquez V, Lopez-Guede J M, Chatzievangelou D, et al. Deep learning based deep-sea automatic image enhancement and animal species classification[J]. Journal of Big Data, 2023, 10(1): 37.

89
Bell K L C, Chow J S, Hope A, et al. Low-cost, deep-sea imaging and analysis tools for deep-sea exploration: A collaborative design study[J]. Frontiers in Marine Science, 2022, 9: 873700.

90
van der Most N, Qian P Y, Gao Y, et al. Active hydrothermal vent ecosystems in the Indian Ocean are in need of protection[J]. Frontiers in Marine Science, 2023, 9: 1067912.

91
Lutz R, Shank T, Rona P, et al. Recent advances in imaging deep-sea hydrothermal vents[J]. Cahiers de biologie marine, 2002, 43(3-4): 267- 269.

92
Li W Q, Chen G, Kong Q Q, et al. A VR-Ocean system for interactive geospatial analysis and 4D visualization of the marine environment around Antarctica[J]. Computers & Geosciences, 2011, 37(11): 1743- 1751.

93
Khan S, Ullah I, Ali F, et al. Deep learning-based marine big data fusion for ocean environment monitoring: Towards shape optimization and salient objects detection[J]. Frontiers in Marine Science, 2023, 9: 1094915.

94
Wang M Q, Wang D N, Xiang Y F, et al. Fusion of ocean data from multiple sources using deep learning: Utilizing sea temperature as an example[J]. Frontiers in Marine Science, 2023, 10: 1112065.

95
Leyva-Mayorga I, Martinez-Gost M, Moretti M, et al. Satellite edge computing for real-time and very-high resolution earth observation[J]. IEEE Transactions on Communications, 2023, 71(10): 6180- 6194.

96
Alharbey R A, Jamil F. Federated learning framework for real-time activity and context monitoring using edge devices[J]. Sensors, 2025, 25(4): 1266.

97
Mourtzis D, Tsoubou S, Angelopoulos J. Robotic cell reliability optimization based on digital twin and predictive maintenance[J]. Electronics, 2023, 12(9): 1999.

98
Putranto A, Lin T H, Tsai P T. Digital twin-enabled robotics for smart tag deployment and sensing in confined space[J]. Robotics and Computer-Integrated Manufacturing, 2025, 95: 102993.

99
Laranjeira M, Arnaubec A, Brignone L, et al. 3D perception and augmented reality developments in underwater robotics for ocean sciences[J]. Current Robotics Reports, 2020, 1(3): 123- 130.

100
Vergara C R, Theodoropoulos G, Bahsoon R, et al. Federated digital twins as an enabling technology for collaborative decision-making[C]//Proceedings of the 38th ACM SIGSIM Conference on Principles of Advanced Discrete Simulation. New York: ACM, 2024.

101
Hu Z Z, Liu Y, Zhang J M. The application and development of digital twin in the marine domain; proceedings of the ocean[C]. Beijing: Tsinghua University Press, 2025.

102
Corliss J B, Dymond J, Gordon L I, et al. Submarine thermal sprirngs on the Galapagos rift[J]. Science, 1979, 203(4385): 1073- 1083.

103
Jamieson A J, Linley T D, Eigler S, et al. A global assessment of fishes at lower abyssal and upper hadal depths (5000 to 8000 m)[J]. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 2021, 178: 103642.

104
Jamieson A J, Maroni P J, Bond T, et al. New maximum depth record for bony fish: Teleostei, Scorpaeniformes, Liparidae (8336 m, Izu-Ogasawara Trench)[J]. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 2023, 199: 104132.

105
Kato Y, Fujinaga K, Nakamura K, et al. Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements[J]. Nature Geoscience, 2011, 4: 535- 539.

106
Becker K, Austin J, et al. Fifty years of scientific ocean drilling[J]. Oceanography, 2019, 32(1): 17- 21.

107
Robinson R S, Tikoo S, Fulton P. Sea changes for scientific ocean drilling[J]. Physics Today, 2024, 77(2): 28- 34.

108
Jamieson A J, Fang J S, Cui W C. Exploring the hadal zone: Recent advances in hadal science and technology[J]. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 2018, 155: 1- 3.

109
Scientific Ocean Drilling: Accomplishments and Challenges[M]. Washington, D. C. : National Academies Press, 2011.

110
Wang Z H, Zhang B Y, Cui W C, et al. Freeform fabrication of pneumatic soft robots via multi-material jointed direct ink writing[J]. Macromolecular Materials and Engineering, 2022, 307(4): 2100813.

111
Wang Z H, Zhang B Y, He Q, et al. Multimaterial embedded 3D printing of composite reinforced soft actuators[J]. Research, 2023, 6: 0122.

112
Tian D Y, Zhang X C, Zou S C, et al. Experimental application of heterogeneous gliders communication system in South China Sea[J]. Ocean Engineering, 2023, 289: 116187.

113
Li X, Fu B, Hu S, et al. China's sea floor observatory network R&D: Current status and prospects[C]//Proceedings of Oceans - Yeosu. Piscataway, NJ: IEEE, 2012: 1-6.

114
Stojanovic M. Underwater acoustic communications[C]// Proceedings of Electro/International 1995. Piscataway, NJ: IEEE, 1995: 435-440.

115
Tarantino S, Da Lio B, Cozzolino D, et al. Feasibility study of quantum communications in aquatic scenarios[J]. Optik, 2020, 216: 164639.

116
Wu T C, Chi Y C, Wang H Y, et al. Blue laser diode enables underwater communication at 12.4 gbps[J]. Scientific Reports, 2017, 7: 40480.

117
Cui W C, Pan L L, Li R. A suggestion of using task efficiency to replace swimming efficiency for both robotic fish and living fish[J]. Ships and Offshore Structures, 2024, 19(12): 2204- 2212.

118
Shao X H, Yang J, Sawan M, et al. Bridging biology and robotics: Advancing submersible technology from robotic to live-fish models[J]. Academia Engineering, 2025, 2(2): 1- 14.

119
Luick J. Physical Oceanographic Assessment of the Nautilus Environmental Impact Statement for the Solwara 1 Project[R]. Adelaide: Austides Consulting for Deep Sea Mining Campaign, 2012.

120
Scott S D. The dawning of deep sea mining of metallic sulfides: the geologic perspective[C]//ISOPE Ocean Mining and Gas Hydrates Symposium. Denver: ISOPE, 2007.

121
Jaeckel A L. The international seabed authority and the precautionary principle[M]. Leiden: Brill, 2017.

Outlines

/