Exclusive

Technological innovations in methane control and emission reduction under the twin goals of carbon peak and carbon neutrality

  • Tong ZHANG , 1, 2, 3 ,
  • Liang YUAN , 1, 2, 3, * ,
  • Yuehan WANG 1, 2
Expand
  • 1. School of Safety Science and Engineering, Anhui University of Science & Technology, Huainan 232001, China
  • 2. National Key Laboratory of Deep Coal Safe Mining and Environmental Protection, Huainan, 232001, China
  • 3. State Key Laboratory of Digital Intelligent Technology for Unmanned Coal Mining, Huainan, 232001, China

Received date: 2025-03-12

  Revised date: 2025-05-30

  Online published: 2025-07-03

Copyright

All rights reserved. Unauthorized reproduction is prohibited.

Abstract

In the context of global efforts to address climate change and China's determined march toward the twin goals of carbon peak and carbon neutrality, methane control and emission reduction have become key links in achieving sustainable development and climate targets. This paper analyzes the strategic layout for methane management and mitigation under these twin carbon objectives. To date, preliminary achievements have been made: A three-dimensional "air–space–ground" monitoring system enables precise localization of emission sources; upstream recovery rates in energy extraction have improved; source-control technologies for rice cultivation and livestock farming in agriculture have matured; and a methane-focused climate finance framework has injected fresh capital into reduction efforts. However, methane mitigation challenges remain severe. In the energy sector, methane leaks in traditional coal mining and fugitive emissions in oil and gas systems hinder the green transition; in agriculture, anaerobic processes in rice paddies and enteric fermentation and manure management in livestock farming lead to significant methane release; and in waste treatment, landfill disposal and anaerobic treatment of industrial wastewater generate large methane volumes. In response, this paper proposes a cross-sectoral collaboration that breaks down the boundaries among the energy, agriculture, and waste-treatment industries to build an integrated mitigation system. This approach balances energy security with the twin carbon goals by steadily steering the energy mix toward greener, lower-carbon sources while ensuring supply reliability. It also calls for leveraging educational, research, and talent advantages to establish national-level science and innovation platforms to tackle key technological challenges in methane control. Looking ahead, with sustained technological innovation, targeted policy optimization, and deep international cooperation, China is poised to overcome current methane-control obstacles, achieve substantial emission reductions, support its carbon-peak and neutrality goals, and contribute meaningfully to global climate governance.

Cite this article

Tong ZHANG , Liang YUAN , Yuehan WANG . Technological innovations in methane control and emission reduction under the twin goals of carbon peak and carbon neutrality[J]. Science & Technology Review, 2025 , 43(12) : 55 -64 . DOI: 10.3981/j.issn.1000-7857.2025.03.00049

1
IEA. Global methane tracker 2024[R]. Paris: IEA, 2024.

2
WMO. WMO greenhouse gas bulletin: The state of greenhouse gases in the atmosphere based on global observations through 2023[R]. Geneva: WMO, 2024.

3
IPCC. Climate change 2021: The physical science basis. Contribution of working group Ⅰ to the sixth assessment report of the intergovernmental panel on climate change[M]. Cambridge: Cambridge University Press, 2021.

4
IPCC. Climate change 2022: Mitigation of climate change. Contribution of working group Ⅲ to the sixth assessment report of the intergovernmental panel on climate change[J]. Cambridge: Cambridge University Press, 2022,

5
UNFCCC. First global stocktake proposal by the President[R]. Dubai: UNFCCC, 2023.

6
Crippa M, Guizzardi D, Pagani F, et al. GHG emissions of all world countries, publications office of the European Union[EB/OL]. [2025-02-28]. https://data.europa.eu/doi/10.2760/4002897.

7
United Nations Framework Convention on Climate Change(UNFCCC). Greenhouse gas inventory data: Detailed data by party[EB/OL]. [2025-02-28]. https://di.unfccc.int/detailed_data_by_party.

8
中华人民共和国生态环境部. 中华人民共和国气候变化第四次国家信息通报[R]. 北京: 中华人民共和国生态环境部, 2023.

9
中华人民共和国生态环境部. 中华人民共和国气候变化第三次两年更新报告[R]. 北京: 中华人民共和国生态环境部, 2023.

10
United Nations Environment Programme. Global methane assessment: Benefits and costs of mitigating methane emissions[R]. Kenya: United Nations Environment Programme, 2021.

11
Oil & Gas Decarbonization Charter. The Oil & Gas Decarbonization Charter[EB/OL]. [2025-05-28]. https://www.ogdc.org/.

12
许玲懿, 樊星. 中国为COP29的成功作出重要贡献[J]. 世界环境, 2024(6): 23- 25.

13
姜渊. 美国《清洁空气法》中的环境质量达标制度研究: 以联邦与地方的权限为视角[J]. 中国环境管理, 2018, 10(4): 122- 128.

14
The White House Office of Domestic Climate Policy. US methane emissions reduction action plan[R]. Washington: The White House, 2021.

15
Government of Canada. Faster and further: Canada's methane strategy[R]. Ottawa: Government of Canada, 2022.

16
Government of Canada. Canada's greenhouse gas offset credit system: Protocols[R]. Ottawa: Government of Canada, 2024.

17
European Commission. EU strategy to reduce methane emissions[R]. Luxembourg: European Commission, 2020.

18
European Union. Regulation (EU) 2024/1787 of the European Parliament and of the Council of 13 June 2024 on the reduction of methane emissions in the energy sector and amending Regulation (EU) 2019/942[R]. Luxembourg: European Union, 2024.

19
袁亮, 黄晶. 中国甲烷管控技术发展路线图[M]. 北京: 科学出版社, 2024.

20
中华人民共和国环境保护部. 煤层气(煤矿瓦斯)排放标准: GB 21522—2008[S]. 北京: 中国环境科学出版社, 2008.

21
袁亮, 张通, 张庆贺, 等. 双碳目标下废弃矿井绿色低碳多能互补体系建设思考[J]. 煤炭学报, 2022, 47(6): 2131- 2139.

22
中华人民共和国生态环境部, 外交部, 国家发展改革委, 等. 《甲烷排放控制行动方案》 [R]. 北京: 中华人民共和国生态环境部, 2023.

23
徐源, 张永香. 透过"沸腾"的COP28看中美参与全球气候治理[J]. 气候变化研究进展, 2025, 21(1): 135- 143.

24
达虹鞠, 许德刚, 王晨, 等. 基于无人机平台的甲烷监测技术及其在油气行业的应用[J]. 中国环境监测, 2024, 40(1): 1- 11.

25
解北京, 李晓旭, 张景顺, 等. 井工煤矿甲烷排放精准监测与核算[J]. 煤炭科学技术, 2024, 52(4): 119- 130.

26
刘勇丽, 赵晨尧, 刘希平, 等. 水稻甲烷排放遥感监测研究综述[J]. 环境工程技术学报, 2024, 14(5): 1523- 1531.

27
袁亮. 卸压开采抽采瓦斯理论及煤与瓦斯共采技术体系[J]. 煤炭学报, 2009, 34(1): 1- 8.

28
徐凤银, 闫霞, 林振盘, 等. 我国煤层气高效开发关键技术研究进展与发展方向[J]. 煤田地质与勘探, 2022, 50(3): 1- 14.

29
袁亮. 我国深部煤与瓦斯共采战略思考[J]. 煤炭学报, 2016, 41(1): 1- 6.

30
袁亮. 煤炭精准开采科学构想[J]. 煤炭学报, 2017, 42(1): 1- 7.

31
袁亮. 煤及共伴生资源精准开采科学问题与对策[J]. 煤炭学报, 2019, 44(1): 1- 9.

32
袁亮. 中国煤矿区煤层气清洁发展机制项目开发理论与实践[M]. 北京: 煤炭工业出版社, 2008.

33
薛明, 翁艺斌, 刘光全, 等. 石油与天然气生产过程甲烷逃逸排放检测与核算研究现状及建议[J]. 气候变化研究进展, 2019, 15(2): 187- 195.

34
Yan X Y, Xia L L, Ti C P. Temporal and spatial variations in nitrogen use efficiency of crop production in China[J]. Environmental Pollution, 2022, 293: 118496.

35
Xia L L, Cao L, Yang Y, et al. Integrated biochar solutions can achieve carbon-neutral staple crop production[J]. Nature Food, 2023, 4(3): 236- 246.

36
董红敏, 李玉娥, 陶秀萍, 等. 中国农业源温室气体排放与减排技术对策[J]. 农业工程学报, 2008, 24(10): 269- 273.

37
董红敏, 朱志平, 黄宏坤, 等. 畜禽养殖业产污系数和排污系数计算方法[J]. 农业工程学报, 2011, 27(1): 303- 308.

38
董红敏, 李玉娥, 朱志平, 等. 农村户用沼气CDM项目温室气体减排潜力[J]. 农业工程学报, 2009, 25(11): 293- 296.

39
张相锋, 肖学智, 何毅, 等. 垃圾填埋场的甲烷释放及其减排[J]. 中国沼气, 2006, 24(1): 3- 5.

40
冯俊熙, 陈多福. 垃圾填埋场甲烷排放监测方法研究进展[J]. 环境科学与技术, 2014, 37(3): 174- 179.

41
施汉昌. 污水处理技术的研究与发展[J]. 给水排水, 2013, 49(2): 1- 3.

42
王博, 宋永一, 王鑫, 等. 有机固体废弃物热化学制氢研究进展[J]. 化工进展, 2021, 40(2): 709- 721.

43
杨天华, 佟瑶, 翟英媚, 等. 碳中和愿景下有机固废热转化清洁利用技术研究现状与展望[J]. 洁净煤技术, 2024, 30(3): 29- 51.

44
王科, 吕晨. 中国碳市场建设成效与展望(2024)[J]. 北京理工大学学报(社会科学版), 2024, 26(2): 16- 27.

Outlines

/