Exclusive

Advances in quantum vacuum measurement technology

  • Yongjun CHENG ,
  • Wenjun SUN ,
  • Meng DONG ,
  • Wenjie JIA ,
  • Dong FAN
Expand
  • National Key Laboratory on Vacuum Technology and Physics, Lanzhou Institute of Physics, Lanzhou 730000, China

Received date: 2025-04-30

  Online published: 2025-07-03

Copyright

All rights reserved. Unauthorized reproduction is prohibited.

Cite this article

Yongjun CHENG , Wenjun SUN , Meng DONG , Wenjie JIA , Dong FAN . Advances in quantum vacuum measurement technology[J]. Science & Technology Review, 2025 , 43(12) : 65 -79 . DOI: 10.3981/j.issn.1000-7857.2025.04.00139

1
Martin−Delgado M A . The new SI and the fundamental constants of nature[J]. European Journal of Physics, 2020, 41 (6): 063003.

DOI

2
Jousten K , Hendricks J , Barker D , et al. Perspectives for a new realization of the pascal by optical methods[J]. Metrologia, 2017, 54 (6): S146- S161.

DOI

3
Scherschligt J , Fedchak J A , Ahmed Z , et al. Review article: Quantum−based vacuum metrology at the national institute of standards and technology[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2018, 36 (4): 040801.

4
Gibney E . Pressure's 400−year−old measurement techniques get an upgrade[J]. Nature, 2019, 570 (7762): 424- 425.

DOI

5
Li D T , Wang Y J , Zhang H Z , et al. Applications of vacuum measurement technology in China's space programs[J]. Space: Science & Technology, 2021, 23: 7592858.

6
刘见, 王刚, 胡一鸣, 等. 首例引力波探测事件GW150914与引力波天文学[J]. 科学通报, 2016, 61: 1502- 1524.

7
Scherschligt J , Fedchak J A , Barker D S , et al. Development of a new UHV/XHV pressure standard (cold atom vacuum standard)[J]. Metrologia, 2017, 54 (6): S125- S132.

DOI

8
Kłos J, Tiesinga E. Elastic and glancing−angle rate coefficients for heating of ultracold Li and Rb atoms by collisions with room−temperature noble gases, H2, and N2[J]. 2023, 158(1): 014308.

9
Barker D S , Acharya B P , Fedchak J A , et al. Precise quantum measurement of vacuum with cold atoms[J]. Review of Scientific Instruments, 2022, 93 (12): 121101.

DOI

10
Eckel S P , Barker D S , Fedchak J A , et al. Effect of glancing collisions in the cold−atom vacuum standard[J]. Physical Review A, 2025, 111 (2): 023317.

DOI

11
Sitaram A , Elgee P K , Campbell G K , et al. Confinement of an alkaline−earth element in a grating magneto−optical trap[J]. Review of Scientific Instruments, 2020, 91 (10): 103202.

DOI

12
Ehinger L H , AcharyaB P , Barker D S , et al. Comparison of two multiplexed portable cold-atom vacuum standards[J]. AVS Quantum Science, 2022, 4 (3): 034403.

DOI

13
Shen P R , Madison K W , Booth J L . Realization of a universal quantum pressure standard[J]. Metrologia, 2020, 57 (2): 025015.

DOI

14
Shen P R , Madison K W , Booth J L . Refining the cold atom pressure standard[J]. Metrologia, 2021, 58 (2): 022101.

DOI

15
Booth J L , Madison K W . Revising the universality hypothesis for room−temperature collisions[J]. Physical Review A, 2024, 110 (5): 052802.

DOI

16
Shen P R , Frieling E , Herperger K R , et al. Cross−calibration of atomic pressure sensors and deviation from quantum diffractive collision universality for light particles[J]. New Journal of Physics, 2023, 25 (5): 053018.

DOI

17
Halbey J, Bernien M, Rubin T, et al. Towards a dual species cold atom based pressure sensor[C]// 2023 CCM & IMEKO TC16 7th International Conference on Pressure and Vacuum Metrology, Washington DC, USA, 15−19. 2023: 1−4.

18
Halbey J , Bernien M , Rubin T , et al. Design advances on the dual species cold atom based pressure standard[J]. Measurement: Sensors, 2025, 38: 101695.

DOI

19
Egan P F , Stone J A , Ricker J E , et al. Comparison measurements of low−pressure between a laser refractometer and ultrasonic manometer[J]. Review of Scientific Instruments, 2016, 87 (5): 053113.

DOI

20
Egan P F , Stone J A , Hendricks J H , et al. Performance of a dual Fabry–Perot cavity refractometer[J]. Optics Letters, 2015, 40 (17): 3945- 3948.

DOI

21
Ricker J E , Douglass K O , Hendricks J H , et al. Gas pressure calibration from 0.01 Pa to 400000 Pa using a portable quantum traceable standard[J]. Measurement: Sensors, 2025, 38: 101676.

DOI

22
Silander I , Zakrisson J , Zelan M , et al. An Invar−based dual Fabry–Perot cavity refractometer for assessment of pressure with a pressure independent uncertainty in the sub−mPa region[J]. Journal of Vacuum Science & Technology B, 2023, 41 (6): 064206.

23
Zakrisson J , Silander I , Silva de Oliveira V , et al. Procedure for automated low uncertainty assessment of empty cavity mode frequencies in Fabry-Pérot cavity based refractometry[J]. Optics Express, 2024, 32 (3): 3959- 3973.

DOI

24
Zakrisson J , Silander I , Zelan M , et al. Gouy phase in the presence of gas in Fabry−Perot refractometers[J]. Optics Express, 2025, 33 (6): 12914- 12924.

DOI

25
Mari D , Pisani M , Astrua M , et al. Realisation of an optical pressure standard by a multi−reflection interferometric technique[J]. Measurement, 2023, 211: 112639.

DOI

26
Takei Y , Arai K , Yoshida H , et al. Development of an optical pressure measurement system using an external cavity diode laser with a wide tunable frequency range[J]. Measurement, 2020, 151: 107090.

DOI

27
Takei Y , Telada S , Yoshida H , et al. Challenges of an optical pressure standard in medium vacuum measurements[J]. Measurement: Sensors, 2022, 22: 100371.

DOI

28
Rezki A, Silvestri Z, Bentouati D, et al. Status and performance of the LNE−cnam Fabry−Perot refractometer[C]// Proceedings of the 7th IMEKO TC16 Conference on Pressure and Vacuum Measurement. Washington DC: IMEKO, 2024: 1−6.

29
Forssén C , Silander I , Zakrisson J , et al. Demonstration of a transportable fabry–Pérot refractometer by a ring−type comparison of dead−weight pressure balances at four European national metrology institutes[J]. Sensors, 2024, 24 (1): 1- 13.

DOI

30
Lanzinger E , Jousten K , Kühne M . Partial pressure measurement by means of infrared laser absorption spectroscopy[J]. Vacuum, 1998, 51 (1): 47- 51.

DOI

31
Yun D , Egbert S C , Malarich N A , et al. Temperature, pressure, velocity, and water vapor mole fraction profiles in a ramjet combustor using dual frequency comb spectroscopy and a high temperature absorption database[J]. Combustion and Flame, 2025, 273: 113922.

DOI

32
成永军, 董猛, 孙雯君, 等. 基于7Li冷原子操控的超高真空测量[J]. 物理学报, 2024, 73 (22): 64- 73.

33
Sun W J , Wu X M , Cheng Y J , et al. Cold atom technology applied to ultra−high vacuum (UHV) measurements[J]. Vacuum, 2024, 222: 113079.

DOI

34
Wu X M , Cheng Y J , Dong M , et al. Advances in cold atom UHV/XHV metrology[J]. Vacuum, 2023, 207: 111561.

DOI

35
张苏钊, 孙雯君, 董猛, 等. 基于磁光阱中6Li冷原子的真空度测量[J]. 物理学报, 2022, 71 (9): 145- 152.

36
张苏钊, 孙雯君, 董猛, 等. 基于冷原子的超高/极高真空测量机理研究进展[J]. 真空科学与技术学报, 2021, 41 (5): 391- 402.

37
Yang Y C , Rubin T , Sun J P . Characterization of a vacuum pressure standard based on optical refractometry using nitrogen developed at NIM[J]. Vacuum, 2021, 194: 110598.

DOI

38
Ma K , Yang Y C , Feng X J . Low−pressureLow−pressure performance of a Fabry–Pérot cavity based optical pressure standard working at the zero−thermal−expansion temperature[J]. Vacuum, 2024, 221: 112861.

DOI

39
范栋, 习振华, 贾文杰, 等. 量子真空计量标准中的非极性稀薄气体折射率测量研究[J]. 物理学报, 2021, 70 (4): 040602.

40
范栋, 李得天, 习振华, 等. 量子真空计量中的气体折射率测量方法研究[J]. 中国激光, 2021, 48 (23): 2304002.

41
贾文杰, 习振华, 范栋, 等. 基于Fabry−Perot激光谐振腔的量子真空计量技术研究[J]. 光学学报, 2020, 40 (22): 2212005.

42
贾文杰, 习振华, 董猛, 等. 基于Fabry−Perot光学干涉腔的真空计量装置研究进展[J]. 真空与低温, 2020, 26 (6): 431- 436.

43
范栋, 李得天, 成永军, 等. 基于双光梳的激光吸收谱真空分压力测量技术研究[J]. 宇航计测技术, 2023, 43 (1): 1- 5.

44
代虎, 王永军, 李得天. 基于宽波段激光吸收谱的真空分压力测量方法[J]. 真空与低温, 2020, 26 (1): 37- 41.

45
Dai H , Fan D , Ren X Y , et al. Vacuum partial pressure measurement using low−budget dual comb system[J]. Vacuum, 2024, 224: 113105.

Outlines

/