Envisioning the strategic demands for building a modernized powerful nation in 2040 and motivated by the integrated development of new materials, new productive forces, and emerging industries, this manuscript comprehensively analyzes the common requirements of national strategies, relevant policies, and action outlines regarding frontier-disruptive core technologies and critical material development. Based on the advancement and innovation of Materials Genome Engineering's core technologies setting a crucial foundation for key innovations in AI data infrastructure, foundational material models, R&D of new materials, and industrial applications, AI will further accelerate the development of high-throughput intelligent computing software/tools, drive paradigm shifts from high-throughput experimentation to autonomous experimentation, propel the evolution of material AI agents, construct data resource nodes/platforms with standardized specifications, advance new productivity and novel material industries, as well as foster educational paradigm transformation and next-generation talent cultivation. The convergence of Materials Genome Engineering and intelligent science is fundamentally reshaping the underlying logic of material science, technology, and education through a trinity model consisted of ‘‘theoretical reconstruction, technological empowerment, and industrial traction’’. This integration represents not merely disciplinary upgrading, but a systematic transformation encompassing scientific paradigms, industrial ecosystems, and talent development models. It will cultivate interdisciplinary professionals crucial for strategic fields such as advanced materials, emerging industries, and future-oriented sectors.
William Yi Wang
,
LI Gaonan
,
LIU Zhe
,
GAO Xingyu
,
WANG Hongqiang
,
SONG Haifeng
,
YANG Mingli
,
SU Yanjing
,
Margulan Ibraimov
,
LI Jinshan
. Materials genome engineering and intelligent science: The endless frontier in AI+ era[J]. Science & Technology Review, 2025
, 43(12)
: 93
-109
.
DOI: 10.3981/j.issn.1000-7857.2025.05.00039
[1] 干勇. 加快科技创新, 开启新材料强国建设新篇章[J]. 前瞻科技, 2025, 4(1): 4-5.
[2] 宿彦京, 付华栋, 白洋, 等. 中国材料基因工程研究进展[J]. 金属学报, 2020, 56(10): 1313-1323.
[3] Ward C H. Materials genome initiative for global competitiveness[EB/OL]. [2025-06-09]. https://www.mgi.gov/sites/mgi/files/materials_genome_initiative-final.pdf.
[4] Materials Genome Initiative. Initiative, materials genome initiative strategic plan[EB/OL]. [2025-06-09]. https://www.federalregister.gov/documents/2014/06/20/2014-14392/materials-genome-initiative-strategic-plan.
[5] Xie J X, Su Y J, Zhang D W, et al. A vision of materials genome engineering in China[J]. Engineering, 2022, 10: 10-12.
[6] National Science and Technology Council. Materials genome initiative strategic plan[EB/OL]. [2025-06-09]. https://www.mgi.gov/sites/mgi/files/MGI-2021-Strategic-Plan.pdf.
[7] Zikui L. Perspective on materials genome[J]. 中国科学通报: 英文版, 2014, 59(15): 1619-1623.
[8] European Union. Materials 2030 roadmap[EB/OL]. [2025- 06-09]. https://www.ami2030.eu/roadmap/.
[9] United State Department of Defense. National Defense Science & Technology Strategy 2023[EB/OL]. [2025-06-09]. https://media.defense.gov/2023/May/09/2003218877/-1/-1/0/NDSTS-FINAL-WEB-VERSION.PDF.
[10]中华人民共和国中央人民政府. 国务院关于印发《中国制造2025》的通知[EB/OL]. [2025-06-09]. https://www.gov.cn/zhengce/content/2015-05/19/content_9784.htm.
[11] Panchanathan S. Envisioning the future of the AI research ecosystem[J]. PNAS Nexus, 2024, 3(2): 21.
[12] US National Science Foundation. NSF invests $162 million in research centers to accelerate materials science from lab to factor[EB/OL]. (2023-06-26) [2025-06-09]. https://www.nsf.gov/news/nsf-invests-162-million-research-centers.
[13] European Commission. The EU framework programme for research and innovation[EB/OL]. [2025-06-09]. https://www.europarl.europa.eu/thinktank/en/document/EPRS_IDA (2017)608697.
[14] Panchanathan S, Prabhakar A. Strengthening and Democratizing the U. S. Artificial Intelligence Innovation EcosystemAn implementation plan for a national artificial intelligence research resource[EB/OL]. [2025-06-09]. https://nsf-govresources.nsf.gov/2023-10/NAIRR-TF-Final-Report-2023.pdf?VersionId=2RqgASgtGLzEI6QKsMIL.MWITnjgrmh_.
[15] National Science and Technology Council. Framework for considering data infrastructure and interconnectivity[EB/ OL]. [2025-06-09]. https://bidenwhitehouse.archives.gov/wp-content/uploads/2024/12/NSTC-Framework-For-Considering-Data-Infrastructure-and-Interconnectivity.pdf.
[16] Xie M, Gan Y, Wang H. Research on new material power strategy by 2035[J]. Chinese Journal of Engineering Science, 2020, 22(5): 1.
[17] National Academies of Sciences, Engineering, and Medicine (NASEM). The Endless Frontier: The Next 75 Years in Science[M]. Washington: The National Academies Press, 2020.
[18] Pielke R Jr. In retrospect: Science: The endless frontier[J]. Nature, 2010, 466(7309): 922-923.
[19] Wang W Y, Zhang S Y, Li G N, et al. Artificial intelligence enabled smart design and manufacturing of advanced materials: The endless Frontier in AI+era[J]. Materials Genome Engineering Advances, 2024, 2(3): e56.
[20] International Science Council. Preparing national research ecosystems for AI: strategies and progress[EB/OL]. [2025-06-09]. https://council.science/publications/ai-science-systems/.
[21] 温李阳, 姚明佳, 陈忻. 智能驱动的材料研发态势及对策建议[J]. 前瞻科技, 2025, 4(1): 16-27.
[22] European Commission. AI Continent Action Plan[EB/OL]. [2025-06-09]. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52025DC0165.
[23] Hawley J. Decoupling America's Artificial Intelligence Capabilities from China Act 2025[Z]. 2025.
[24] 中华人民共和国中央人民政府. 国务院关于印发新一代人工智能发展规划的通知[EB/OL]. (2017-07-08)[2025-06-09]. https://www.gov.cn/zhengce/content/2017-07/20/content_5211996.htm.
[25] 汪洪, 向勇, 项晓东, 等. 材料基因组: 材料研发新模式[J]. 科技导报, 2015, 33(10): 13-19.
[26] 项晓东, 汪洪, 向勇, 等. 组合材料芯片技术在新材料研发中的应用[J]. 科技导报, 2015, 33(10): 64-78.
[27] Jiang X, Xue D Z, Bai Y, et al. AI4Materials: Transforming the landscape of materials science and enigneering[J]. Review of Materials Research, 2025, 1(1): 100010.
[28] 宿彦京, 杨明理, 祝伟丽, 等. 新材料研发智能化技术发展研究[J]. 中国工程科学, 2023, 25(3): 161-169.
[29] 谢建新, 宿彦京, 薛德祯, 等. 机器学习在材料研发中的应用[J]. 金属学报, 2021, 57(11): 1343-1361.
[30] Merchant A, Batzner S, Schoenholz S S, et al. Scaling deep learning for materials discovery[J]. Nature, 2023, 624(7990): 80-85.
[31] Zhang S Y, Wang W Y, Wang X Z, et al. Large language models enabled intelligent microstructure optimization and defects classification of welded titanium alloys[J]. Journal of Materials Informatics, 2024(4): 34.
[32] 廖名情, 王毅, 王义, 等. 叠熵理论: 从材料基因到材料性能[J]. 金属学报, 2024, 60(10): 1379-1387.
[33] Jones N. OpenAI's 'deep research' tool: Is it useful for scientists?[J/OL]. Nature, 2025. [2025-06-09]. https://www.nature.com/articles/d41586-025-00377-9.
[34] Shneiderman B. The big picture for big data: Visualization[J]. Science, 2014, 343(6172): 730.
[35] Lu T, Li M J, Lu W C, et al. Recent progress in the data-driven discovery of novel photovoltaic materials[J]. Journal of Materials Informatics, 2022, 2(2): 7.
[36] Jiang Y Y, Zhang G, You J, et al. PocketFlow is a data- and-knowledge-driven structure-based molecular generative model[J]. Nature Machine Intelligence, 2024, 6(3): 326-337.
[37] Cao B, Yang S, Sun A K, et al. Domain knowledge-guided interpretive machine learning: Formula discovery for the oxidation behavior of ferritic-martensitic steels in supercritical water[J]. Journal of Materials Informatics, 2022, 2(2): 4.
[38] Zeni C, Pinsler R, Zügner D, et al. A generative model for inorganic materials design[J]. Nature, 2025, 639(8055): 624-632.
[39] Tang Y, Xu W, Cao J, et al. MatterChat: A multi-modal llm for material science[J/OL]. [2025-06-09]. https://doi.org/10.48550/arXiv.2502.13107.
[40] Xia Y, Jin P, Xie S, et al. Nature language model: Deciphering the language of nature for scientific discovery[J/OL]. [2025-06-09]. https://doi.org/10.48550/arXiv.2502.07527.
[41] Ma Y B, Gou Z B, Hao J H, et al. SciAgent: Tool- augmented language models for scientific reasoning[C]// Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, 2024: 15701– 15736.
[42] McKinsey Digital. McKinsey technology trends outlook 2023[EB/OL]. [2025-06-09]. https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/the-top-trends-intech-2023.
[43] Li Y J, Choi D, Chung J, et al. Competition-level code generation with AlphaCode[J]. Science, 2022, 378(6624): 1092-1097.
[44] Kolter J Z. AlphaCode and "data-driven" programming[J]. Science, 2022, 378(6624): 1056.
[45] 王海舟, 汪洪, 丁洪, 等. 材料的高通量制备与表征技术[J]. 科技导报, 2015, 33(10): 31-49.
[46] Dassault Systems. 由人工智能驱动的创成式体验——在基于知识的工程中成功应用人工智能(AI)[EB/OL]. [2025-06-09]. https://www.3ds.com/zh-hans/products/catia/ai-driven-generative-experiences.
[47] 上海市经济和信息化委员会. 《新材料中试平台建设指南(2024—2027年)》地方解读系列文章之二: 加快构建中试服务平台畅通新材料研发与产业化链接通道[EB/OL]. (2024-10-12) [2025-06-09]. https://wap.miit.gov.cn/jgsj/ycls/gzdt/art/2024/art_090e89cfda174410bd3491c4c8ae8a9e.html.
[48] 唐广波. 《新材料中试平台建设指南(2024—2027年)》专家解读系列文章之四: 建设新材料中试平台助力科技成果向现实生产力转化[EB/OL]. (2024-10-14)[2025-06-09]. https://www.miit.gov.cn/jgsj/ycls/gzdt/art/2024/art_def9711ee71a407ca690daff8338c398.html.
[49] 谢建新. 《新材料大数据中心总体建设方案》专家解读系列文章之一: 构建材料数据资源体系加快推进材料科技和产业数字化和智能化升级促进高质量发展[EB/OL]. (2024-10-30) [2025-06-09]. https://www.miit.gov.cn/jgsj/ycls/gzdt/art/2024/art_1ab343166c144cd4a0c03ca12f548ec4.html.
[50] 中国电子技术标准化研究院. 面向智能制造的工业大模型标准化研究报告[Z]. 2025.
[51] 工业互联网产业联盟. 工业数字孪生白皮书[Z]. 2021.
[52] 国家统计局. 第五次全国经济普查公报(第六号)——部分新兴产业发展情况[EB/OL]. (2024-12-26)[2025-06-09]. https://www.stats.gov.cn/sj/zxfb/202412/t20241226_1957891.html.
[53] 赵鸿滨, 周旗钢, 李志辉, 等. 面向新兴产业和未来产业的新材料发展战略研究[J]. 中国工程科学, 2024, 26(1): 23-34.
[54] 汪洪, 项晓东, 张澜庭. 数据+人工智能是材料基因工程的核心[J]. 科技导报, 2018, 36(14): 15-21.
[55] 干勇. 《新材料中试平台建设指南(2024—2027年》专家解读系列文章之一: 统筹新材料中试平台建设加快形成新质生产力[EB/OL]. (2024-10-11) [2025-06-09]. https://wap.miit.gov.cn/jgsj/ycls/gzdt/art/2024/art_699393ad1dd745c7831b5d72bb0fcb02.html.
[56] 中华人民共和国工业和信息化部. 《新材料中试平台建设指南(2024—2027年)》解读[EB/OL]. (2024-10-11)[2025-06-09]. https://www.miit.gov.cn/jgsj/ycls/gzdt/art/2024/art_b08d1dbd18a64f57b20a7db3da4bbede.html.