Exclusive

Materials genome engineering and intelligent science: The endless frontier in AI+ era

  • Yi Wang William , 1, 2 ,
  • Gaonan LI 1, 2 ,
  • Zhe LIU 1, 2 ,
  • Xingyu GAO 3 ,
  • Hongqiang WANG 1, 2 ,
  • Haifeng SONG 3 ,
  • Mingli YANG 4 ,
  • Yanjing SU , 5, * ,
  • Margulan Ibraimov 6 ,
  • Jinshan LI , 1, 2, *
Expand
  • 1. China-Kazakhstan Belt and Road Joint Laboratory on Materials Genome Engineering and Intelligent Science, Northwestern Polytechnical University, Xi'an 710072, China
  • 2. National Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
  • 3. Institute of Applied Physics and Computational Mathematics, Beijing 100094, China
  • 4. Research Center for Materials Genome Engineering, Sichuan University, Chengdu 610065, China
  • 5. Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
  • 6. Department of Solid State Physics and Nonlinear Physics, Al-Farabi Kazakh National University, Almaty 050040, Republic of Kazakhstan

Received date: 2025-05-08

  Online published: 2025-07-03

Copyright

All rights reserved. Unauthorized reproduction is prohibited.

Cite this article

Yi Wang William , Gaonan LI , Zhe LIU , Xingyu GAO , Hongqiang WANG , Haifeng SONG , Mingli YANG , Yanjing SU , Margulan Ibraimov , Jinshan LI . Materials genome engineering and intelligent science: The endless frontier in AI+ era[J]. Science & Technology Review, 2025 , 43(12) : 93 -109 . DOI: 10.3981/j.issn.1000-7857.2025.05.00039

1
干勇. 加快科技创新, 开启新材料强国建设新篇章[J]. 前瞻科技, 2025, 4 (1): 4- 5.

2
宿彦京, 付华栋, 白洋, 等. 中国材料基因工程研究进展[J]. 金属学报, 2020, 56 (10): 1313- 1323.

DOI

3
Ward C H. Materials genome initiative for global competitiveness[EB/OL]. [2025−06−09]. https://www.mgi.gov/sites/mgi/files/materials_genome_initiative-final.pdf.

4
Materials Genome Initiative. Initiative, materials genome initiative strategic plan[EB/OL]. [2025−06−09]. https://www.federalregister.gov/documents/2014/06/20/2014-14392/materials-genome-initiative-strategic-plan.

5
Xie J X , Su Y J , Zhang D W , et al. A vision of materials genome engineering in China[J]. Engineering, 2022, 10: 10- 12.

DOI

6
National Science and Technology Council. Materials genome initiative strategic plan[EB/OL]. [2025−06−09]. https://www.mgi.gov/sites/mgi/files/MGI-2021-Strategic-Plan.pdf.

7
Zikui L . Perspective on materials genome[J]. 中国科学通报: 英文版, 2014, 59 (15): 1619- 1623.

8
European Union. Materials 2030 roadmap[EB/OL]. [2025−06−09]. https://www.ami2030.eu/roadmap/.

9
United State Department of Defense. National Defense Science & Technology Strategy 2023[EB/OL]. [2025−06−09]. https://media.defense.gov/2023/May/09/2003218877/-1/-1/0/NDSTS-FINAL-WEB-VERSION.PDF.

10
中华人民共和国中央人民政府. 国务院关于印发《中国制造2025》的通知[EB/OL]. [2025−06−09]. https://www.gov.cn/zhengce/content/2015-05/19/content_9784.htm.

11
Panchanathan S . Envisioning the future of the AI research ecosystem[J]. PNAS Nexus, 2024, 3 (2): 21.

12
US National Science Foundation. NSF invests $162 million in research centers to accelerate materials science from lab to factor[EB/OL]. (2023−06−26) [2025−06−09]. https://www.nsf.gov/news/nsf-invests-162-million-research-centers.

13
European Commission. The EU framework programme for research and innovation[EB/OL]. [2025−06−09]. https://www.europarl.europa.eu/thinktank/en/document/EPRS_IDA(2017)608697.

14
Panchanathan S, Prabhakar A. Strengthening and Democratizing the U. S. Artificial Intelligence Innovation EcosystemAn implementation plan for a national artificial intelligence research resource[EB/OL]. [2025-06-09]. https://nsf-govresources.nsf.gov/2023-10/NAIRR-TF-Final-Report-2023.pdf?VersionId=2RqgASgtGLzEI6QKsMIL.MWITnjgrmh_.

15
National Science and Technology Council. Framework for considering data infrastructure and interconnectivity[EB/ OL]. [2025−06−09]. https://bidenwhitehouse.archives.gov/wp-content/uploads/2024/12/NSTC-Framework-For-Considering-Data-Infrastructure-and-Interconnectivity.pdf.

16
Xie M , Gan Y , Wang H . Research on new material power strategy by 2035[J]. Chinese Journal of Engineering Science, 2020, 22 (5): 1.

DOI

17
National Academies of Sciences, Engineering, and Medicine (NASEM) . The Endless Frontier: The Next 75 Years in Science[M]. Washington: The National Academies Press, 2020.

18
Pielke R Jr . In retrospect: Science: The endless frontier[J]. Nature, 2010, 466 (7309): 922- 923.

DOI

19
Wang W Y , Zhang S Y , Li G N , et al. Artificial intelligence enabled smart design and manufacturing of advanced materials: The endless Frontier in AI+era[J]. Materials Genome Engineering Advances, 2024, 2 (3): e56.

DOI

20
International Science Council. Preparing national research ecosystems for AI: strategies and progress[EB/OL]. [2025−06−09]. https://council.science/publications/ai-science-systems/.

21
温李阳, 姚明佳, 陈忻. 智能驱动的材料研发态势及对策建议[J]. 前瞻科技, 2025, 4 (1): 16- 27.

22
European Commission. AI Continent Action Plan[EB/OL]. [2025-06-09]. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52025DC0165.

23
Hawley J. Decoupling America's Artificial Intelligence Capabilities from China Act 2025[Z]. 2025.

24
中华人民共和国中央人民政府. 国务院关于印发新一代人工智能发展规划的通知[EB/OL]. (2017-07-08)[2025-06-09]. https://www.gov.cn/zhengce/content/2017-07/20/content_5211996.htm.

25
汪洪, 向勇, 项晓东, 等. 材料基因组: 材料研发新模式[J]. 科技导报, 2015, 33 (10): 13- 19.

DOI

26
项晓东, 汪洪, 向勇, 等. 组合材料芯片技术在新材料研发中的应用[J]. 科技导报, 2015, 33 (10): 64- 78.

DOI

27
Jiang X , Xue D Z , Bai Y , et al. AI4Materials: Transforming the landscape of materials science and enigneering[J]. Review of Materials Research, 2025, 1 (1): 100010.

DOI

28
宿彦京, 杨明理, 祝伟丽, 等. 新材料研发智能化技术发展研究[J]. 中国工程科学, 2023, 25 (3): 161- 169.

29
谢建新, 宿彦京, 薛德祯, 等. 机器学习在材料研发中的应用[J]. 金属学报, 2021, 57 (11): 1343- 1361.

DOI

30
Merchant A , Batzner S , Schoenholz S S , et al. Scaling deep learning for materials discovery[J]. Nature, 2023, 624 (7990): 80- 85.

DOI

31
Zhang S Y , Wang W Y , Wang X Z , et al. Large language models enabled intelligent microstructure optimization and defects classification of welded titanium alloys[J]. Journal of Materials Informatics, 2024 (4): 34.

32
廖名情, 王毅, 王义, 等. 叠熵理论: 从材料基因到材料性能[J]. 金属学报, 2024, 60 (10): 1379- 1387.

DOI

33
Jones N. OpenAI's 'deep research' tool: Is it useful for scientists?[J/OL]. Nature, 2025. [2025−06−09]. https://www.nature.com/articles/d41586-025-00377-9.

34
Shneiderman B . The big picture for big data: Visualization[J]. Science, 2014, 343 (6172): 730.

35
Lu T , Li M J , Lu W C , et al. Recent progress in the data−driven discovery of novel photovoltaic materials[J]. Journal of Materials Informatics, 2022, 2 (2): 7.

36
Jiang Y Y , Zhang G , You J , et al. PocketFlow is a data−and−knowledge−driven structure−based molecular generative model[J]. Nature Machine Intelligence, 2024, 6 (3): 326- 337.

37
Cao B , Yang S , Sun A K , et al. Domain knowledge−guided interpretive machine learning: Formula discovery for the oxidation behavior of ferritic−martensitic steels in supercritical water[J]. Journal of Materials Informatics, 2022, 2 (2): 4.

38
Zeni C , Pinsler R , Zügner D , et al. A generative model for inorganic materials design[J]. Nature, 2025, 639 (8055): 624- 632.

39
Tang Y, Xu W, Cao J, et al. MatterChat: A multi−modal llm for material science[J/OL]. [2025−06−09]. https://doi.org/10.48550/arXiv.2502.13107.

40
Xia Y, Jin P, Xie S, et al. Nature language model: Deciphering the language of nature for scientific discovery[J/OL]. [2025−06−09]. https://doi.org/10.48550/arXiv.2502.07527.

41
Ma Y B, Gou Z B, Hao J H, et al. SciAgent: Tool−augmented language models for scientific reasoning[C]//Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, 2024: 15701– 15736.

42
McKinsey Digital. McKinsey technology trends outlook 2023[EB/OL]. [2025−06−09]. https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/the-top-trends-intech-2023.

43
Li Y J , Choi D , Chung J , et al. Competition−level code generation with AlphaCode[J]. Science, 2022, 378 (6624): 1092- 1097.

44
Kolter J Z . AlphaCode and "data−driven" programming[J]. Science, 2022, 378 (6624): 1056.

45
王海舟, 汪洪, 丁洪, 等. 材料的高通量制备与表征技术[J]. 科技导报, 2015, 33 (10): 31- 49.

DOI

46
Dassault Systems. 由人工智能驱动的创成式体验——在基于知识的工程中成功应用人工智能(AI)[EB/OL]. [2025−06−09]. https://www.3ds.com/zh-hans/products/catia/ai-driven-generative-experiences.

47
上海市经济和信息化委员会. 《新材料中试平台建设指南(2024—2027年)》地方解读系列文章之二: 加快构建中试服务平台 畅通新材料研发与产业化链接通道[EB/OL]. (2024−10−12) [2025−06−09]. https://wap.miit.gov.cn/jgsj/ycls/gzdt/art/2024/art_090e89cfda174410bd3491c4c8ae8a9e.html.

48
唐广波. 《新材料中试平台建设指南(2024—2027年)》专家解读系列文章之四: 建设新材料中试平台 助力科技成果向现实生产力转化[EB/OL]. (2024−10−14)[2025−06−09]. https://www.miit.gov.cn/jgsj/ycls/gzdt/art/2024/art_def9711ee71a407ca690daff8338c398.html.

49
谢建新. 《新材料大数据中心总体建设方案》专家解读系列文章之一: 构建材料数据资源体系 加快推进材料科技和产业数字化和智能化升级促进高质量发展[EB/OL]. (2024−10−30) [2025−06−09]. https://www.miit.gov.cn/jgsj/ycls/gzdt/art/2024/art_1ab343166c144cd4a0c03ca12f548ec4.html.

50
中国电子技术标准化研究院. 面向智能制造的工业大模型标准化研究报告[Z]. 2025.

51
工业互联网产业联盟. 工业数字孪生白皮书[Z]. 2021.

52
国家统计局. 第五次全国经济普查公报(第六号)——部分新兴产业发展情况[EB/OL]. (2024−12−26)[2025−06−09]. https://www.stats.gov.cn/sj/zxfb/202412/t20241226_1957891.html.

53
赵鸿滨, 周旗钢, 李志辉, 等. 面向新兴产业和未来产业的新材料发展战略研究[J]. 中国工程科学, 2024, 26 (1): 23- 34.

54
汪洪, 项晓东, 张澜庭. 数据+人工智能是材料基因工程的核心[J]. 科技导报, 2018, 36 (14): 15- 21.

DOI

55
干勇. 《新材料中试平台建设指南(2024—2027年》专家解读系列文章之一: 统筹新材料中试平台建设 加快形成新质生产力[EB/OL]. (2024−10−11) [2025−06−09]. https://wap.miit.gov.cn/jgsj/ycls/gzdt/art/2024/art_699393ad1dd745c7831b5d72bb0fcb02.html.

56
中华人民共和国工业和信息化部. 《新材料中试平台建设指南(2024—2027年)》解读[EB/OL]. (2024−10−11)[2025−06−09]. https://www.miit.gov.cn/jgsj/ycls/gzdt/art/2024/art_b08d1dbd18a64f57b20a7db3da4bbede.html.

Outlines

/