This paper provides a comprehensive review of the development, current status and future prospects of Tokamak-type nuclear fusion devices in the world. First, it expounds the advantages of fusion energy compared with other energy sources, such as its high safety, abundant fuel reserves, high energy density, no greenhouse gas emissions like carbon dioxide and environmental friendliness. Subsequently, it focuses on reviewing the historical development of the Tokamak, from the concept's inception in the 1950s to the current construction of the International Thermonuclear Experimental Reactor (ITER). It highlights the renowned tokamak devices that have made significant influential achievements and critical technological breakthroughs in the world, such as those that have validated the scientific feasibility of controlled nuclear fusion, achieved the highest fusion energy gain (Q), set world records for plasma triple products, reached the highest plasma temperatures, or revealed important physical phenomena, mechanisms, and new or advanced operation modes. Next, the paper also examines the critical scientific and technological challenges yet to be resolved for Tokamak fusion reactors, such as fuel cycles, tritium self - sufficiency, and materials issues. Finally, it offers perspectives on the future development direction of Tokamak fusion reactors and the commercialization prospects of fusion energy. This review aims to serve as a reference for the field of nuclear fusion research.
[1] Singer B, Bingham D R, Corbett B, et al. AI/data centers' global power surge and the Sustainability impact[R]. Gold-man Sachs, 2024.
[2] 杨军, 张恩昊, 郭志恒, 等. 全球核能科技前沿综述[J]. 科技导报, 2020, 38(20): 35-49.
[3] 叶奇蓁. 核电高质量创新发展[Z]. 中核工程2025年科学技术委员会全体大会, 2025.
[4] 杨军, 孙培杰, 彭翠婷, 等. 世界核能科技发展前沿进展[J]. 科技导报, 2024, 42(23): 7-30.
[5] Armstrong R C, Whyte D G, Field R, et al. The role of fusion power in deep decarbonization scenarios[R]. MIT Energy Initiative (MITEI), MIT Plasma Science and Fusion Center, 2024.
[6] Shafranov V D, Bondarenko B D, Goncharov G A, et al. On the history of the research into controlled thermonuclear fusion[J]. Uspekhi Fizicheskih Nauk, 2001, 171(8): 877.
[7] Sakharov A D, Tamm I E. Possible configuration of a thermonuclear reactor[J]. Journal of Experimental and Theoretical Physics, 1950, 1: 733-734.
[8] Arnoux Robert. Which was the first "tokamak"—or was it "tokomag"?[EB/OL]. (2008-10-27)[2025-05-12]. https://www.iter.org/node/20687/which-was-first-tokamak-or-was-it-tokomag.
[9] Waldrop M M. Pursuing fusion power[J/OL]. Knowable Magazine, (2023-11-01)[2025-05-12]. https://knowablema-gazine.org/content/article/physical-world/2023/the-challenge-of-fusion-power.
[10] Smirnov V P. Tokamak foundation in USSR/Russia 1950-1990[J]. Nuclear Fusion, 2010, 50(1): 014003.
[11] Peacock N J, Robinson D C, Forrest M J, et al. Measurement of the electron temperature by Thomson scattering in tokamak T3[J]. Nature, 1969, 224(5218): 488-490.
[12] Hawryluk R J. Preparing for TFTR D-T Experiments[R]. Princeton: Princeton Plasma Physics Laboratory, 2014.
[13] Hawryluk R J. Results from D-T experiments on TFTR and implications for achieving an ignited plasma[J]. Philosophical Transactions of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 1999, 357(1752): 443-469.
[14] Lithuanian Energy Institute. European researches achieve fusion energy record[R]. Kaunas: Lithuanian Energy Institute, 2022.
[15] EUROfusion. History of Fusion[EB/OL]. (2022-02-10)[2025-05-12]. https://euro-fusion.org/fusion/history-of-fusion/.
[16] Gibney E. Nuclear-fusion reactor smashes energy record[J]. Nature, 2022, 602(7897): 371.
[17] Scott-Mearns N, Windridge M. New fusion energy record from JET's final tritium experiments[EB/OL]. (2024-02- 09)[2025-05-12]. https://fusionenergyinsights.com/blog/post/new-fusion-energy-record-from-jet-s-final-tritium-experi-ments.
[18] 万宝年. 人造太阳: EAST全超导托卡马克核聚变实验装置[M]. 杭州: 浙江教育出版社, 2017.
[19] Fujita T, Kamada Y, Ishida S, et al. High performance experiments in JT-60U high current divertor discharges[R]. Japan Atomic Energy Research Institute.
[20] EuroFusion. Fusion experiment ASDEX Upgrade in Garching near Munich[EB/OL]. (2024-06-09)[2025-05-12]. https://euro-fusion.org/ml-content/asdex-upgrade/.
[21] Wagner F, Becker G, Behringer K, et al. Regime of improved confinement and high beta in neutral-beam- heated divertor discharges of the ASDEX tokamak[J]. Physical Review Letters, 1982, 49(19): 1408-1412.
[22] Keilhacker M, Team A. The ASDEX divertor tokamak[J]. Nuclear Fusion, 1985, 25(9): 1045-1054.
[23] Hellsten T. Plasma physics and controlled nuclear fusion research 1978[J]. Nuclear Instruments and Methods, 1979, 166(3): 591.
[24] Greenwald M, Gwinn D, Milora S, et al. Energy confinement of high-density pellet-fueled plasmas in the alcator C tokamak[J]. Physical Review Letters, 1984, 53(4): 352-355.
[25] 可控核聚变. 紧凑高场托卡马克装置: 美国Alcator C-Mod[EB/OL]. (2025-05-31)[2025-05-31]. https://www.nuclear-fusion.com.cn/blog/alcator-c-mod.
[26] Greenwald M, Bader A, Baek S, et al. 20 years of research on the alcator C-mod tokamak[J]. Physics of Plasma, 2014, 21: 110501.
[27] Plasma Science and Fusion Center. New record for fusion[EB/OL]. (2016-10-14) [2025-05-12]. https://energy.mit.edu/news/new-record-fusion/.
[28] Haack J. Superconductivity for nuclear fusion: Past, present, and future[J]. Arabian Journal for Science and Engineering, 2025, 50: 3233-3237.
[29] Chernoplekov N A, Kiknadze G I, Nenarochkin P V. On the testing of large superconducting magnet systems[J]. Cryogenics, 1983, 23(3): 168-169.
[30] Khvostenko P P, Anashkin I O, Bondarchuk E N, et al. Current status of tokamak T-15MD[J]. Fusion Engineering and Design, 2021, 164: 112211.
[31] Zushi H, Itoh S, Hanada K, et al. Overview of steady state tokamak plasma experiments in TRIAM-1M[J]. Nuclear Fusion, 2003, 43(12): 1600-1609.
[32] Zushi H, Nakamura K, Hanada K, et al. Overview of steady-state tokamak operation and current drive experiments in TRIAM-1M[C]. 20th IAEA Fusion Energy Conference. Vilamoura, 2004.
[33] Pamela J. Ten years of operation and developments on tore supra[J]. Fusion Engineering and Design, 1999, 46(2/3/4): 313-322.
[34] van Houtte D, Martin G, Bécoulet A, et al. Recent fully non-inductive operation results in Tore Supra with 6 min, 1 GJ plasma discharges[J]. Nuclear Fusion, 2004, 44(5): L11-L15.
[35] CEA. Nuclear fusion: WEST beats the world record for plasma duration![EB/OL]. (2025-02-18) [2025-05-12]. https://www.cea.fr/english/Pages/News/nuclear-fusion-west-beats-the-world-record-for-plasma-duration.aspx.
[36] Schmidt J A, Thomassen K I, Goldston R J, et al. The design of the tokamak physics experiment (TPX)[J]. Journal of Fusion Energy, 1993, 12(3): 221-258.
[37] Wu S T. An overview of the EAST project[J]. Fusion Engineering and Design, 2007, 82(5/6/7/8/9/10/11/12/13/14): 463-471.
[38] 中国科学院. 中国“人造太阳”实现1.2亿度101秒等离子体运行[EB/OL]. (2022-01-11) [2025-05-12]. https://www.cas.cn/jh/202201/t20220111_4821653.shtml.
[39] 中国科学院. EAST装置实现1056秒的长脉冲高参数等离子体运行[EB/OL]. (2021-12-31) [2025-05-12]. https://www.cas.cn/syky/202201/t20220104_4820592.shtml.
[40] 蔡其敏. 全超导托卡马克EAST装置实现亿度千秒高约束模等离子体运行[EB/OL]. (2025-01-24) [2025-05-12]. http://www.ipp.cas.cn/xwdt/ttxw/202501/t20250120_410191. html.
[41] Han H, Park S J, Sung C, et al. A sustained high-temperature fusion plasma regime facilitated by fast ions[J]. Nature, 2022, 609(7926): 269-275.
[42] Ko W H, Yoon S W, Kim W C, et al. Overview of the KSTAR experiments toward fusion reactor[J]. Nuclear Fusion, 2024, 64(11): 112010.
[43] 可控核聚变. 解锁全球最大在运托卡马克装置-JT-60SA [EB/OL]. (2024-06-13) [2025-05-12]. https://www.nuclear-fusion.com.cn/blog/jt-60sa.
[44] Tomarchio V, Barabaschi P, Pietro E D, et al. Status of the JT-60SA project: An overview on fabrication, assembly and future exploitation[J]. Fusion Engineering and Design, 2017, 123: 3-10.
[45] Kamada Y. ITER overview[R]. Saint-Paul-lès-Durance: ITER Organization, 2024.
[46] Alex M. ITER, an introduction[Z]. Saint-Paul-lès-Durance: ITER Organization, ITER Lectures, 2018.
[47] Loarte A, Pitts R A, Wauters T, et al. The new ITER baseline, research plan and open R&D issues[J]. Plasma Physics and Controlled Fusion, 2025, 67: 065023.
[48] Golfinopoulos T, Michael P C, Ihloff E, et al. Building the runway: A new superconducting magnet test facility made for the SPARC toroidal field model coil[J]. IEEE Transactions on Applied Superconductivity, 34(2): 1-16.
[49] MIT, PSFC, CFS. Fusion energy: The high-field path to fusion energy, SPARC[R]. MIT, PSFC, CFS, 2024.
[50] Creely A J, Greenwald M J, Ballinger S B, et al. Overview of the SPARC tokamak[J]. Journal of Plasma Physics, 2020, 86(5): 865860502.
[51] Abdou M. Overview of the tritium fuel cycle and conditions for tritium fuel self-sufficiency and other tritium issues [C]//4th IAEA DEMO Programme Workshop November 15th-18th. Karlsruhe, 2016.
[52] Wurzel S E, Hsu S C. Progress toward fusion energy breakeven and gain as measured against the Lawson criterion[J]. Physics of Plasmas, 2022, 29(6): 062103.
[53] International energy agency. World energy outlook 2023[R]. International energy agency, 2023.
[54] Fusion industry association. The global fusion industry in 2024, Fusion companies survey by the fusion industry association[R]. Fusion industry association, 2024.