WANG Zhong, KUANG Jianchao, PANG Heqing, HUO Zhilei
In order to study the relationship between the deep saline formation (DSF) storage cost and the reservoir properties and the location for the CO2 storage, an engineering economic model of the DSF storage cost is established in this paper. Compared with the conventional studies, this model takes into account the costs of the old well review and the post-injection monitoring, focusing more on the leakage and pollution prevention. Taking a typical scenario as an example, the total capital cost is calculated as 76.86×106 $, the total annual operation and maintenance cost is 5.03×106 $/a, and the levelized cost of the DSF storage is 4.89 $/t. In the levelized cost, the injection related cost, the monitoring related cost and the site characterization related cost account for 80.43%, 10.46% and 9.12% , respectively. The relations among the levelized storage cost, the injection rate, and the reservoir properties such as the permeability, the pressure, the porosity, the thickness and the depth are also analyzed. It is shown that the levelized cost decreases with the increase of the permeability, the thickness and the porosity of the reservoir. On the other hand, however, the relations between the injection rate, the reservoir pressure and the reservoir depth are more complex, they are non-monotonous. These relations are explained from the aspects of the number of the injection wells and the area of the storage site. Finally, through the sensitivity analysis, the reservoir depth and the reservoir pressure are found to be the most sensitive factors to the levelized cost.