LIU Ruiping, SU Weiming, LI Jiaxin, SHEN Chao, ZHANG Chao, HE Peng, WANG Qi
As an N-type semi-conductor, the tin dioxide (SnO2) based anode materials have received a great attention due to its high theoretical capacity (782 mA·h/g) and high energy density. However, the poor cycling performance resulting from the electrode pulverization and the electrical disconnection caused by large volume changes (about 300%) during the charge and discharge process and the poor rate properties resulting from the low electrical conductivity of SnO2 have limited its development. To address these problems, one strategy is to construct various nanostructures, including the nanoparticles, the nanowires, the nanofibers, the nanotubes, the nanosheets and the nanospheres. In addition to the nanosizing SnO2 particles, the SnO2 based hybrids as the anode materials for the LIBs have been also studied intensively to enhance the reaction reversibility. This paper mainly reviews the research progress of tin dioxide based anode materials based on the two aspects of nanosizing and preparing SnO2 based hybrids, including the hybrids with other metal oxides, the amorphous carbon, the carbon nanotubes and the graphene. Finally, we also discuss the existing issues and challenges in the development of SnO2-based anode materials for lithium ion batteries.