JIANG Qiao, WEI Yu, LI Can, SONG Linlin, DING Baoquan, ZHAO Yuliang
Natural mechanical devices carry out critical tasks for cell function, including DNA replication, intracellular transport, ion pumping and cell motility. Inspired by nature, artificial devices and machines on the molecular scale have been bottom-up designed, constructed, and operated. The unique chemical and physical properties enable DNA molecules to serve as building blocks to construct artificial, machine-like nanostructures. DNA nanostructures are characteristic of the uniform sizes and shapes, precise spatial addressability and reconfigurable mechanical operation as well as excellent biocompatibility, showing great promise for drug delivery. After integrating specific functional moieties on addressable structures, therapeutic DNA nanorobots have been constructed, which can deliver cargoes to target diseased cells or region, responsively release the loaded drugs and enhance the therapeutic efficacy. The molecular cargoes attached to DNA-based nanocarriers are usually three types:small molecular drugs, functional oligonucleotides, and therapeutic proteins. In this review, recent advances of DNA nanocarriers and therapeutic nanorobots for intelligent drug delivery are summarized. The challenges and future perspectives regarding functional DNA materials are discussed.