[1] 杨旭豪. 基于声表面波技术可控合成金纳米粒子的实验研究[D]. 长春:吉林大学, 2016. Yang Xuhao. Experimental study on the controllable synthesis of gold nanoparticles based on sound surface wave technology[D]. Changchun:Jilin University, 2016.
[2] Ruppel C C W, Reindl L, Weigel R. SAW devices and their wireless communications applications[J]. Microwave Magazine IEEE, 2002, 3(2):65-71.
[3] Polh A. A review of wireless SAW sensors[J]. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 2000, 47(2):317-332.
[4] Gronewold T M. Surface acoustic wave sensors in the bioanalytical field:recent trends and challenges[J]. Analytica Chimica Acta, 2007, 603(2):119-128.
[5] Länge K, Blaess G, Voigt A, et al. Integration of a surface acoustic wave biosensor in a microfluidic polymer chip[J]. Biosensors & Bioelectronics, 2007, 22(2):227-232.
[6] Renaudin A, Chabot V, Grondin E, et al. Integrated active mixing and biosensing using surface acoustic waves (SAW) and surface plasmon resonance (SPR) on a common substrate[J]. Lab on a Chip, 2010, 10(1):111-115.
[7] 文常保, 党双欢, 朱博, 等. 基于WIFI的无线声表面波传感器信号采集系统[J]. 传感技术学报, 2015, 28(10):1552-1557. Wen Changbao, Dang Shuanghuan, Zhu Bo, et al. Wireless SAW sensor signal acquisition system based on the WIFI[J]. Chinese Journal of Sensors and Actuators, 2015, 28(10):1552-1557.
[8] 党双欢. 基于WIFI的无线声表面波振荡器数据采集系统[D]. 西安:长安大学, 2016. Dang Shuanghuan. Data acquisition system of wireless acoustic surface wave oscillator based on WIFI[D]. Xi'an:Chang'an University, 2016.
[9] Lin S C, Mao X, Huang T J. Surface acoustic wave (SAW) acoustophoresis:Now and beyond[J]. Lab on a Chip, 2012, 12(16):2766-2770.
[10] Miller D, Smith N, Bailey M, et al. Overview of therapeutic ultrasound applications and safety considerations[J]. Journal of Ultrasound in Medicine, 2012, 31(4):623-634.
[11] Wiklund M. Acoustofluidics 12:Biocompatibility and cell viability in microfluidic acoustic resonators[J]. Lab on a Chip, 2012, 12(11):2018-2028.
[12] Ding X, Lin S C, Kiraly B, et al. On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves[J]. PNAS, 2012, 109(28):11105-11109.
[13] Li H, Friend J, Yeo L, et al. Effect of surface acoustic waves on the viability, proliferation and differentiation of primary osteoblast-like cells[J]. Biomicrofluidics, 2009, 3(3):920.
[14] Friend J, Yeo L Y. Microscale acoustofluidics:Microfluidics driven via acoustics and ultrasonics[J]. Reviews of Modern Physics, 2011, 83(2):647-704.
[15] Squires T M, Quake S R. Microfluidics:Fluid physics on the nanoliter scale[J]. Review of Modern Physics, 2005, 77(3):977-1026.
[16] 田民波, 刘德令. 薄膜科学与技术手册[M]. 北京:机械工业出版社, 1991. Tian Minbo, Liu Deling. Thin film science and technology manual[M]. Beijing:China Machine Press, 1991.
[17] 武少南. 声表面波压力传感器的研究[D]. 上海:东华大学, 2014. Wu Shaonan. Research on pressure sensor of surface acoustic waves[D]. Shanghai:Donghua University, 2014.
[18] 田四方. 金刚石基LiNbO3压电薄膜的制备与声表面波性能研究[D]. 郑州:郑州大学, 2011. Tian Sifang. Preparation of diamond-based LiNbO3 piezoelectric thin films and study on surface acoustic waves properties[D]. Zhengzhou:Zhengzhou University, 2011.
[19] 邵春玉. PZT压电薄膜的改性研究[D]. 大连:大连理工大学测试计量技术及仪器系, 2006. Shao Chunyu. Study on the modification of PZT piezoelectric film[D]. Dalian:Dalian University of Technology, 2006.
[20] 刘庆辉. 基于MEMS的声表面波器件设计与制作的关键技术研究[D]. 长沙:国防科学技术大学, 2004. Liu Qinghui. Research on the key technology of MEMSbased surface acoustic waves device design and fabrication[D]. Changsha:National University of Defense Technology, 2004.
[21] 平均芬. 声光可调谐滤波器的理论分析与实验研究[D]. 杭州:浙江工业大学, 2009. Ping Junfen. Theoretical analysis and experimental study of acousto-optic tunable filter[D]. Hangzhou:Zhejiang University of Technology, 2009.
[22] 张瑞. 声表面波射频标签的分析设计[D]. 天津:天津理工大学, 2013. Zhang Rui. Analysis and design of acoustic surface wave radio frequency tag[D]. Tianjin:Tianjin University of Technology, 2013.
[23] Hartmann C S, Secrest B G. End effects in interdigital surface wave transducers[C]//1972 Ultrasonics Symposium. Piscataway New Jereey:IEEE, 1972:413-416.
[24] 王景山, 刘天飞, 孙玮, 等. 声表面波器件模拟与仿真[M]. 北京:国防工业出版社, 2002:52. Wang Jingshan, Liu Tianfei, Sun Wei, et al. Simulation of surface acoustic wave devices[M]. Beijing:National Defence Industry Press, 2002:52.
[25] Lakin K M, Mih D W T, Tarr R M. A new interdigital electrode transducer geometry[J]. IEEE Transactions on Microwave Theory & Techniques, 1974, 22(8):763-768.
[26] 王莹莹. 声表面波器件设计及测试装置的研究[D]. 西安:长安大学, 2015. Wang Yingying. Design and test of surface acoustic wave device[D]. Xi'an:Chang'an University, 2015.
[27] Marshall F G, Newton C O, Paige E G S. Surface acoustic wave multistrip components and their applications[J]. IEEE Transactions on Microwave Theory & Techniques, 1973, 21(4):216-225.
[28] Zhou W, Niu L, Cai F, et al. Spatial selective manipulation of microbubbles by tunable surface acoustic waves[J]. Biomicrofluidics, 2016, 10(3):77-85.
[29] Fakhfouri A, Devendran C, Collins D J, et al. Virtual membrane for filtration of particles using surface acoustic waves (SAW)[J]. Lab on a Chip, 2016, 16(18):3515-3523.
[30] Barnkob R, Augustsson P, Laurell T, et al. Acoustic radiation-and streaming-induced microparticle velocities determined by microparticle image velocimetry in an ultrasound symmetry plane[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2012, 86:056307.
[31] Destgeer G, Sung H J. Recent advances in microfluidic actuation and micro-object manipulation via surface acoustic waves[J]. Lab on a Chip, 2015, 15(13):2722-2738.
[32] Yeo L Y, Friend J R. Ultrafast microfluidics using surface acoustic waves[J]. Biomicrofluidics, 2009, 3(1):381-393.
[33] Frommelt T, Kostur M, Wenzel-SchäFer M, et al. Microfluidic mixing via acoustically driven chaotic advection[J]. Physical Review Letters, 2008, 100(3):034502.
[34] Tseng W K J, Lin L, Sung W C, et al. Active micro-mixers using surface acoustic waves on Y-cut 128° LiNbO3[J]. Journal of Micromechanics & Microengineering, 2006, 16(3):539.
[35] Luong T D, Phan V N, Nguyen N T. High-throughput micromixers based on acoustic streaming induced by surface acoustic wave[J]. Microfluidics & Nanofluidics, 2011, 10(3):619-625.
[36] Rezk A R, Qi A, Friend J R, et al. Uniform mixing in paperbased microfluidic systems using surface acoustic waves[J]. Lab on a Chip, 2012, 12(4):773-779.
[37] Destgeer G, Im S, Ha B H, et al. Adjustable, rapidly switching microfluidic gradient generation using focused travelling surface acoustic waves[J]. Applied Physics Letters, 2014, 104(2):023506.
[38] Yeo L Y, Friend J R. Ultrafast microfluidics using surface acoustic waves[J]. Biomicrofluidics, 2009, 3(1):381-393.
[39] Wixforth A. Acoustically driven planar microfluidics[J]. Superlattices & Microstructures, 2003, 33(5):389-396.
[40] 魏长智. 超声行波微流体驱动理论与技术研究[D]. 济南:山东大学, 2014. Wei Changzhi. Study on the theory and technology of traveling surface acoustic wave microfluidic drive[D]. Jinan:Shandong University, 2014.
[41] 黄远, 李以贵, 颜平, 等. 基于声表面波驱动器的液体单方向驱动[J]. 微纳电子技术, 2017, 54(1):26-30. Huang Yuan, Li Yigui, Yan Ping, et al. Liquid unidirectional actuation based on surface acoustic wave actuators[J]. Micronanoelectronic Technology, 2017, 54(1):26-30.
[42] Guttenberg Z, Muller H, Habermüller H, et al. Planar chip device for PCR and hybridization with surface acoustic wave pump[J]. Lab on a Chip, 2005, 5(3):308-317.
[43] Tan M K, Friend J R, Yeo L Y. Microparticle collection and concentration via a miniature surface acoustic wave device[J]. Lab on a Chip, 2007, 7(5):618-625.
[44] Li H, Friend J R, Yeo L Y. A scaffold cell seeding method driven by surface acoustic waves[J]. Biomaterials, 2007, 28(28):4098-4104.
[45] Rezk A R, Manor O, Friend J R, et al. Unique fingering instabilities and soliton-like wave propagation in thin acoustowetting films[J]. Nature Communications, 2012, 3(6):1167.
[46] Du X Y, Fu Y Q, Luo J K, et al. Microfluidic pumps employing surface acoustic waves generated in ZnO thin films[J]. Journal of Applied Physics, 2009, 105(2):647.
[47] Cecchini M, Girardo S, Pisignano D, et al. Acoustic-counterflow microfluidics by surface acoustic waves[J]. Applied Physics Letters, 2008, 92(10):9745.
[48] Girardo S, Cecchini M, Beltram F, et al. Polydimethylsiloxane-LiNbO3 surface acoustic wave micropump devices for fluid control into microchannels[J]. Lab on a Chip, 2008, 8(9):1557-1563.
[49] Brenker J C, Collins D J, Van P H, et al. On-chip droplet production regimes using surface acoustic waves[J]. Lab on a Chip, 2016, 16(9):1675.
[50] Wang T, Ni Q, Crane N, et al. Surface acoustic wave based pumping in a microchannel[J]. Microsystem Technologies, 2017, 23(5):1-8.
[51] Sesen M, Devendran C, Malikides S, et al. Surface acoustic wave enabled pipette on a chip[J]. Lab on a Chip, 2016, 17(3):438-447.
[52] Jin H J, Destgeer G, Park J, et al. Microfluidic flow switching via localized acoustic streaming controlled by surface acoustic waves[J]. RSC Advances, 2018, 8(6):3206-3212.
[53] Shilton R J, Glass N R, Chan P, et al. Rotational microfluidic motor for on-chip microcentrifugation[J]. Applied Physics Letters, 2011, 98(25):219.
[54] Glass N R, Shilton R J, Chan P P Y, et al. Miniaturized labon-a-disc (miniLOAD)[J]. Small, 2012, 8(12):1881-1888.
[55] Tan M K, Friend J R, Yeo L Y. Interfacial jetting phenomena induced by focused surface vibrations[J]. Physical Review Letters, 2009, 103(2):024501.
[56] Alvarez M, Friend J, Yeo L Y. Rapid generation of protein aerosols and nanoparticles via surface acoustic wave atomization[J]. Nanotechnology, 2008, 19(45):455103.
[57] Eggers J. Nonlinear dynamics and breakup of free-surface flows[J]. Review of Modern Physics, 1997, 69(3):865-929.
[58] Kurosawa M, Watanabe T, Futami A, et al. Surface acoustic wave atomizer[J]. Sensors & Actuators A Physical, 1995, 50(1/2):69-74.
[59] Friend J R, Yeo L Y, Arifin D R, et al. Evaporative self-assembly assisted synthesis of polymeric nanoparticles by surface acoustic wave atomization[J]. Nanotechnology, 2008, 19(14):145301.
[60] Mao Z, Peng L, Wu M, et al. Enriching nanoparticles via acoustofluidics[J]. Acs Nano, 2017, 11(1):603-612.
[61] Collins D J, Ma Z, Han J, et al. Continuous micro-vortexbased nanoparticle manipulation via focused surface acoustic waves[J]. Lab on a Chip, 2016, 17(1):91.
[62] Ng J W, Devendran C, Neild A. Acoustic tweezing of particles using decaying opposing travelling surface acoustic waves (DOTSAW)[J]. Lab on A Chip, 2017, 17(20):3489.
[63] Franke T, Braunmüller S, Schmid L, et al. Surface acoustic wave actuated cell sorting (SAWACS)[J]. Lab on a Chip, 2010, 10(6):789-794.
[64] Collins D J, Neild A, Ai Y. Highly focused high-frequency travelling surface acoustic waves (SAW) for rapid single-particle sorting[J]. Lab on a Chip, 2016, 16(3):471-479.
[65] Ma Z, Collins D J, Ye A. Detachable acoustofluidic system for particle separation via a traveling surface acoustic wave[J]. Analytical Chemistry, 2016, 88(10):5316.
[66] Ng J W, Collins D J, Devendran C, et al. Flow-rate-insensitive deterministic particle sorting using a combination of travelling and standing surface acoustic waves[J]. Microfluidics and Nanofluidics, 2016, 20(11):151.
[67] Collins D J, Khoo B L, Ma Z, et al. Selective particle and cell capture in a continuous flow using micro-vortex acoustic streaming[J]. Lab on a Chip, 2017, 17(10):1769.
[68] Ma Z, Collins D J, Ai Y. Single-actuator bandpass microparticle filtration via traveling surface acoustic waves[J]. Colloid and Interface Science Communications, 2017, 16:6-9.
[69] Ma Z, Zhou Y, Collins D J, et al. Fluorescence activated cell sorting via a focused traveling surface acoustic beam[J]. Lab on a Chip, 2017, 17(18):3176.
[70] Destgeer G, Jung J H, Park J, et al. Acoustic impedancebased manipulation of elastic microspheres using travelling surface acoustic waves[J]. RSC Advances, 2017, 7(36):22524-22530.
[71] Destgeer G, Jin H J, Park J, et al. Particle separation inside a sessile droplet with variable contact angle using surface acoustic waves[J]. Analytical Chemistry, 2016, 89(1):736.
[72] Gizeli E, Goddard N J, Lowe C R, et al. A Love plate biosensor utilising a polymer layer[J]. Sensors and Actuators B:Chemical, 1992, 6(1/3):131-137.
[73] Rasmusson A, Gizeli E. Comparison of poly (methylmethacrylate) and Novolak waveguide coatings for an acoustic biosensor[J]. Journal of Applied Physics, 2001, 90(12):5911-5914.
[74] Harding G L, Du J, Dencher P R, et al. Love wave acoustic immunosensor operating in liquid[J]. Sensors and Actuators A:Physical, 1997, 61(1-3):279-286.
[75] Schlensog M D, Gronewold T M A, Tewes M, et al. A Lovewave biosensor using nucleic acids as ligands[J]. Sensors and Actuators B:Chemical, 2004, 101(3):308-315.
[76] Joseph S, Gronewold T M A, Schlensog M D, et al. Specific targeting of ultrasound contrast agent (USCA) for diagnostic application:An in vitro feasibility study based on SAW biosensor[J]. Biosensors and Bioelectronics, 2005, 20(9):1829-1835.
[77] Jung A, Gronewold T M A, Tewes M, et al. Biofunctional structural design of SAW sensor chip surfaces in a microfluidic sensor system[J]. Sensors and Actuators B:Chemical, 2007, 124(1):46-52.
[78] Zhang Y, Yang F, Sun Z, et al. A surface acoustic wave biosensor synergizing DNA-mediated in situ silver nanoparticle growth for a highly specific and signal-amplified nucleic acid assay[J]. Analyst, 2017, 142(18):3468-3476.
[79] Senveli S U, Ao Z, Rawal S, et al. A surface acoustic wave biosensor for interrogation of single tumour cells in microcavities[J]. Lab on a Chip, 2016, 16(1):163-171.
[80] Wang W, Chen Y, Farooq U, et al. Ultrafast chemical-free cell lysis by high speed stream collision induced by surface acoustic waves[J]. Applied Physics Letters, 2017, 110(14):143504.
[81] Ren L, Zhou D, Mao Z, et al. Rheotaxis of bimetallic micromotors driven by chemical-acoustic hybrid power[J]. ACS Nano, 2017, 11(10):10591-10598.