[1] 柳晨光, 初秀民, 吴青, 等. USV发展现状及展望[J]. 中国造船, 2014, 55(4):194-205.
[2] Liu Z X, Zhang Y M, Xu X, et al. Unmanned surface vehicles:An overview of developments and challenges[J]. Annual Reviews in Control, 2016, 41:71-93.
[3] 马佃波. 无人驾驶汽车环境感知技术综述[J]. 汽车与驾驶维修, 2017(5):122-123.
[4] 于宇, 黄孝鹏, 崔威威, 等. 国外海洋环境观测系统和技术发展趋势[J]. 舰船科学技术, 2017, 39(12):179-183.
[5] Corfield S J, Young J M. Unmanned surface vehicles-game changing technology for naval operations[M]//Advances in Unmanned Marine Vehicles. Chicago:the University of Chicago Press, 2006.
[6] 廖静. 水上机器人惊艳面世——全球最快无人艇"天行一号"[J]. 海洋与渔业, 2018(8):46-47.
[7] 于立新. 基于LOS法的USV滑模控制与路径跟踪研究[D]. 哈尔滨:哈尔滨工程大学, 2019.
[8] Zhao Y X, Li W, Shi P. A real-time collision avoidance learning system for unmanned surface vessels[J]. Neurocomputing, 2016(182):255-266.
[9] 秦梓荷. 水面无人艇运动控制及集群协调规划方法研究[D]. 哈尔滨:哈尔滨工程大学, 2018.
[10] 王瑟. 水面无人艇控制系统设计与实现[D]. 武汉:华中科技大学, 2017.
[11] 刘继鹏. 欠驱动水面无人艇的协同控制研究[D]. 武汉:华中科技大学, 2017.
[12] 彭艳, 陈加宏, 李小毛, 等. 时空上下文融合的无人艇海面目标跟踪[J]. 中国科学(技术科学), 2018, 48(12):1357-1372.
[13] Peng Y, Yang Y, Cui J X, et al. Development of the USV ‘JingHai-I’ and sea trials in theSouthern YellowSea[J]. Ocean Engineering, 2017(131):186-196.
[14] 熊亚洲, 张晓杰, 冯海涛, 等. 一种面向多任务应用的无人水面艇[J]. 船舶工程, 2012, 34(1):16-19.
[15] Sun Z J, Zhang G Q, Qiao L, et al. Robust adaptive trajectory tracking control of underactuated surface vessel in fields of marine practice[J]. Journal of Marine Science & Technology, 2018, 23(10):1-8.
[16] Lu Y, Zhang G Q, Sun Z J, et al. Robust adaptive formation control of underactuated autonomous surface vessels based on MLP and DOB[J]. Nonlinear Dynamics, 2018, 94(6):1-17.
[17] Liu S, Wang C X, Zhang A M. A method of path planning on safe depth for unmanned surface vehicles based on hydrodynamic analysis[J]. Applied Sciences, 2019, 9(16):3228.
[18] Fan Y S, Mu D D, Zhang X K. Course keeping control based on integrated nonlinear feedback for a USV with Pod-like propulsion[J]. Journal of Navigation, 2018, 71(4):1-21.
[19] 陈真义. 小型水面无人船航行状态感知系统研究[D]. 武汉:武汉理工大学, 2014.
[20] 张胜男. 基于多传感器的无人船环境感知研究[D]. 海南:海南大学, 2018.
[21] Onunka C, Bright G, Stopforth R. USV attitude estimation:An approach using quaternion in direction cosine matrix[J]. Robotica, 2016, 34(5):995-1009.
[22] 王国庆. 基于MEMS-IMU的USV导航系统非线性滤波方法研究[D]. 哈尔滨:哈尔滨工程大学, 2017.
[23] Xia G, Wang G, Chen X, et al. Low-cost MEMS-INS/GNSS integration using quaternion-based nonlinear filtering methods for USV[C]//Oceans 2016.Piscataway, NJ:IEEE, 2016:1-7.
[24] Griffiths G, Millard N W, Mcphail S D, et al. On the reliability of the autosub AUV[J]. Underwater Technology the International Journal of the Society for Underwater, 2000, 25(4):175-184.
[25] Griffiths G, Millard N W, Mcphail S D, et al. On the reliability of the autosub autonomous underwater vehicle[J]. Underwater Technology, 2003, 25(4):175-184.
[26] 尹莉莉. 水面无人艇态势评估方法研究[D]. 哈尔滨:哈尔滨工程大学, 2011.
[27] Yin L L, Zhang R B. Situation reasoning in an integrating adjustable autonomy framework[J]. Key Engineering Materials, 2011, 467/468/469:1691-1696.
[28] 尹莉莉. 海上无人系统不确定环境认知方法研究[D]. 哈尔滨:哈尔滨工程大学, 2015.
[29] Zhang R B, Yin L. Situation cognitive in adjustable autonomy system theory and application[C]//Advances in Swarm Intelligence. Cham, Switzerland:Springer, 2012:308-315.
[30] Miller J, Carter D, Kolitz S. Large-scale dynamic observation planning for unmanned surface vessels[C]//AIAA Infotech@Aerospace Conference and AIAA Unmanned Unlimited Conference. Reston:American Institute of Aeronautics and Astronautics, 2007, https://arc.aiaa.org/doi/abs/10.2514/6.2009-1951.
[31] Breivik M, Hovstein V E, FossenTI. Straight-line target tracking for unmanned surface vehicles[J]. Modeling, Identification and Control, 2008, 29(4), 131-149.
[32] Bertram V. Unmanned surface vehicles-a survey[J]. Skibsteknisk Selskab, Copenhagen, Denmark, 2008, 1:1-14.
[33] Mousazadeh H, Jafarbiglu H, Abdolmaleki H, et al. Developing a navigation, guidance and obstacle avoidance algorithm for an Unmanned Surface Vehicle(USV) by algorithms fusion[J]. Ocean Engineering, 2018, 159:56-65.
[34] Naeem W, Xu T, Sutton R, et al. The design of anavigation, guidance, and control system for anunmanned surface vehicle for environmental monitoring[J]. Proceedings of the Institution of Mechanical Engineers, Part M:Journal of Engineeringfor the Maritime Environment, 2008, 222(2):67-79.
[35] Alves J, Oliveira P, Oliveira R, et al. Vehicle and mission control of the DELFIM autonomous surface craft[C]. Conference on Control & Automation. Piscataway, NJ:IEEE, 2006.
[36] Fraunhofer C M L. Maritime unmanned navigation through intelligence in networks[R]. Hamburg:Fraunhofer CML, 2016.
[37] "海翼1号"完成阶段试验[EB/OL]. (2015-06-26)[2019-12-26]. http://www.cnshipnet.com/news/12/55441.html.
[38] 霍萍."天行一号" 惊艳问世的背后[EB/OL]. (2017-12-15)[2019-12-26]. http://wemedia.ifeng.com/41130264/wemedia.shtml.
[39] Larson J, Bruch M, Ebken J. Autonomous navigation and obstacle avoidance for unmanned surface vehicles[C]//Unmanned Systems Technology VⅢ. Bellingham:International Society for Optics and Photonics, 2006, 6230:623007.
[40] Onunka C, Nnadozie R C. Modelling the performance of USV manoeuvring andtarget tracking:An approach using frequency modulated continuous wave radar rotary system[J]. Springer Plus, 2013, 2(1):184.
[41] 余必秀. 基于多传感器的内河无人测量船航行环境感知系统研究[D]. 武汉:武汉理工大学, 2018.
[42] Ruiz A R J, Granja F S. A short-range ship navigation system based on ladar imaging and target tracking for improved safety and efficiency[J]. IEEE Transactionson Intelligent Transportation Systems, 2009, 10(1):186-197.
[43] Tang P P, Zhang R B, Liu D L, et al. Local reactive obstacle avoidance approach for high-speed unmanned surface vehicle[J]. Ocean Engineering, 2015, 106:128-140.
[44] 李小毛, 张鑫, 王文涛, 等. 基于3D激光雷达的无人水面艇海上目标检测[J]. 上海大学学报, 2017, 23(1):27-36.
[45] 王贵槐, 谢朔, 柳晨光, 等. 基于激光雷达的内河无人船障碍物识别方法[J]. 光学技术, 2018, 44(5):602-608.
[46] 刘清宇, 蔡志明. 发展新型声呐系统的几个科学问题[J]. 声学学报, 2019, 44(2):209-213.
[47] Dzikowicz B R, Hefner B T, Leasko R A. Navigation and sonar applications of an acoustical spiral wave front beacon[J]. Acoustical Society of America Journal, 2011, 130(4):2527.
[48] Chen J, Guo Y, Huang C, et al. An obstacle avoidance algorithm designed for USV based on single beam sonar and fuzzy controlC]//IEEE International Conference on Robotics and Biomimetics. Piscataway, NJ:IEEE, 2013:2446-2451.
[49] Fawzia M, Azhar F, Ningsih A K, et al. SI-PENYU:Sistem pengelolaan kelautan berupa USV semi-automatic pendeteksi minyak dan ikan[C/OL]. Program Kreativitas Mahasiswa-Karsa Cipta, 2013. https://www.neliti.com/publications/170301/si-penyu-sistem-pengelolaankelautan-berupa-usv-semi-automatic-pendeteksi-min yak.
[50] Li H, Dong Y, He X, et al. A sonar image mosaicing algorithm based on improved SIFT for USV[C]//2014 IEEE International Conference on Mechatronics and Automation. Piscataway, NJ:IEEE, 2014.
[51] Nikolakopoulos K G, Lampropoulou P, Fakiris E, et al. Synergistic use of UAV and USV data and petrographic analyses for the investigation of beachrock formations:A case study from Syros Island, Aegean Sea, Greece[J]. Minerals, 2018, 8(11):534.
[52] Gal O. Automatic obstacle detection for USV's navigation using vision sensors[C]//Procedings of the 4th International Robotic Sailing Conference. Berlin Heidelberg:Springer, 2011:127-140.
[53] Ma Z, Wen J, Liang X. Video image clarity algorithm research of USV visual system under the sea fog[M]//Advances in Swarm Intelligence. Berlin Heidelberg:Springer, 2013.
[54] Wolf M, Assad C, Kuwata Y, et al. 360-degree visual detection and target tracking on an autonomous surface vehicle[J]. Journal of Field Robotics, 2010, 27(6):819-833.
[55] 刘康克, 熊亚洲, 李刚, 等. 基于视觉图像的水面机器人波浪检测方法[J]. 计算机工程与应用, 2014, 50(16):211-215.
[56] 丁畅. 复杂海况环境下海面图像增强方法研究[D]. 大连:大连海事大学, 2018.
[57] 王斌. 海面目标红外检测方法研究[D]. 大连:大连海事大学, 2018.
[58] 李峰, 易宏. 无人水面艇在水上交通安全监管中的应用[J]. 中国舰船研究, 2018, 13(6):27-33.
[59] El-Fallah A, Zatezalo A, Mahler R, et al. Multi-vehicle decentralized fusion and tracking[C]//Signal Processing, Sensor Fusion, and Target Recognition XXI. Bellingham:International Society for Optics and Photonics, 2012, 8392:83920I
[60] Liu W, Liu Y, Bucknall R. A robust localization method for unmanned surface vehicle (USV) navigation using Fuzzy Adaptive Kalman Filtering[J]. IEEE Access, 2019(7):46071-46083.
[61] 陈鹏, 王少朋, 李玉婷, 等. 浅谈大数据背景下海洋地理信息系统的发展[J]. 海洋信息, 2019, 34(2):14-18.
[62] 刘清宇. 海洋中尺度现象下的声传播研究[D]. 哈尔滨:哈尔滨工程大学, 2006.
[63] Savitz S, Blickstein I, Buryk P, et al. US Navy employment options for unmanned surface vehicles(USVs)[R]. Santa Monica, CA:National Defense Research Institute, 2013.
[64] 张凯, 朱利锋. 陆军无人船艇功能运用探要[J]. 军事交通学院学报, 2018, 20(9):40-44.