综述

水面无人艇环境感知技术及应用发展

  • 张安民 ,
  • 周健 ,
  • 张豪
展开
  • 1. 天津大学海洋科学与技术学院, 天津 300072;
    2. 天津市港口环境监测工程技术中心, 天津 300072
张安民,研究员,研究方向为e-航海、无人艇与海洋测绘,电子信箱:zhanganmin@sina.com

收稿日期: 2019-10-20

  修回日期: 2019-12-30

  网络出版日期: 2021-04-23

基金资助

国家重点研发计划基金项目(2018YFC1407400)

Environmental perception technology and application development of unmanned surface vehicles

  • ZHANG Anmin ,
  • ZHOU Jian ,
  • ZHANG Hao
Expand
  • 1. School of Marine Science and Technology, TianJin University, Tianjin 300072, China;
    2. Tianjin Port Environmental Monitoring Engineering Center, Tianjin 300072, China

Received date: 2019-10-20

  Revised date: 2019-12-30

  Online published: 2021-04-23

摘要

水面无人艇的环境感知能力是其执行任务的前提和基础。介绍了水面无人艇的发展现状,特别是近年来中国在无人艇领域的研发成果;总结了当前水面无人艇在本体状态感知和外界环境感知(主动式感知、被动式感知、融合式感知)领域的研究现状,分析指出各类环境感知技术的优势和不足。根据未来发展需求,提出基于水面无人艇的高精度水文信息反演、海-空协同观测、海洋中尺度现象观测、海洋军事信息搜集等环境感知技术和应用方向的关键技术。

本文引用格式

张安民 , 周健 , 张豪 . 水面无人艇环境感知技术及应用发展[J]. 科技导报, 2021 , 39(5) : 106 -116 . DOI: 10.3981/j.issn.1000-7857.2021.05.012

Abstract

The environmental perception ability is the premise and foundation for unmanned surface vehicles to implement missions. The development status of unmanned surface vehicles, especially the Chinese latest achievements in the field of USV research and development are introduced. The current research status of unmanned surface vehicles ontology state perception and external environment perception (active perception, passive perception, integrated perception) are summarized, and the advantages and limitations are discussed. According to the future development needs, key technologies of environmental perception technology and application orientation such as high precision hydrological information inversion, sea-air collaborative observation, ocean mesoscale phenomenon observation and marine military information gathering based on USV are proposed.

参考文献

[1] 柳晨光, 初秀民, 吴青, 等. USV发展现状及展望[J]. 中国造船, 2014, 55(4):194-205.
[2] Liu Z X, Zhang Y M, Xu X, et al. Unmanned surface vehicles:An overview of developments and challenges[J]. Annual Reviews in Control, 2016, 41:71-93.
[3] 马佃波. 无人驾驶汽车环境感知技术综述[J]. 汽车与驾驶维修, 2017(5):122-123.
[4] 于宇, 黄孝鹏, 崔威威, 等. 国外海洋环境观测系统和技术发展趋势[J]. 舰船科学技术, 2017, 39(12):179-183.
[5] Corfield S J, Young J M. Unmanned surface vehicles-game changing technology for naval operations[M]//Advances in Unmanned Marine Vehicles. Chicago:the University of Chicago Press, 2006.
[6] 廖静. 水上机器人惊艳面世——全球最快无人艇"天行一号"[J]. 海洋与渔业, 2018(8):46-47.
[7] 于立新. 基于LOS法的USV滑模控制与路径跟踪研究[D]. 哈尔滨:哈尔滨工程大学, 2019.
[8] Zhao Y X, Li W, Shi P. A real-time collision avoidance learning system for unmanned surface vessels[J]. Neurocomputing, 2016(182):255-266.
[9] 秦梓荷. 水面无人艇运动控制及集群协调规划方法研究[D]. 哈尔滨:哈尔滨工程大学, 2018.
[10] 王瑟. 水面无人艇控制系统设计与实现[D]. 武汉:华中科技大学, 2017.
[11] 刘继鹏. 欠驱动水面无人艇的协同控制研究[D]. 武汉:华中科技大学, 2017.
[12] 彭艳, 陈加宏, 李小毛, 等. 时空上下文融合的无人艇海面目标跟踪[J]. 中国科学(技术科学), 2018, 48(12):1357-1372.
[13] Peng Y, Yang Y, Cui J X, et al. Development of the USV ‘JingHai-I’ and sea trials in theSouthern YellowSea[J]. Ocean Engineering, 2017(131):186-196.
[14] 熊亚洲, 张晓杰, 冯海涛, 等. 一种面向多任务应用的无人水面艇[J]. 船舶工程, 2012, 34(1):16-19.
[15] Sun Z J, Zhang G Q, Qiao L, et al. Robust adaptive trajectory tracking control of underactuated surface vessel in fields of marine practice[J]. Journal of Marine Science & Technology, 2018, 23(10):1-8.
[16] Lu Y, Zhang G Q, Sun Z J, et al. Robust adaptive formation control of underactuated autonomous surface vessels based on MLP and DOB[J]. Nonlinear Dynamics, 2018, 94(6):1-17.
[17] Liu S, Wang C X, Zhang A M. A method of path planning on safe depth for unmanned surface vehicles based on hydrodynamic analysis[J]. Applied Sciences, 2019, 9(16):3228.
[18] Fan Y S, Mu D D, Zhang X K. Course keeping control based on integrated nonlinear feedback for a USV with Pod-like propulsion[J]. Journal of Navigation, 2018, 71(4):1-21.
[19] 陈真义. 小型水面无人船航行状态感知系统研究[D]. 武汉:武汉理工大学, 2014.
[20] 张胜男. 基于多传感器的无人船环境感知研究[D]. 海南:海南大学, 2018.
[21] Onunka C, Bright G, Stopforth R. USV attitude estimation:An approach using quaternion in direction cosine matrix[J]. Robotica, 2016, 34(5):995-1009.
[22] 王国庆. 基于MEMS-IMU的USV导航系统非线性滤波方法研究[D]. 哈尔滨:哈尔滨工程大学, 2017.
[23] Xia G, Wang G, Chen X, et al. Low-cost MEMS-INS/GNSS integration using quaternion-based nonlinear filtering methods for USV[C]//Oceans 2016.Piscataway, NJ:IEEE, 2016:1-7.
[24] Griffiths G, Millard N W, Mcphail S D, et al. On the reliability of the autosub AUV[J]. Underwater Technology the International Journal of the Society for Underwater, 2000, 25(4):175-184.
[25] Griffiths G, Millard N W, Mcphail S D, et al. On the reliability of the autosub autonomous underwater vehicle[J]. Underwater Technology, 2003, 25(4):175-184.
[26] 尹莉莉. 水面无人艇态势评估方法研究[D]. 哈尔滨:哈尔滨工程大学, 2011.
[27] Yin L L, Zhang R B. Situation reasoning in an integrating adjustable autonomy framework[J]. Key Engineering Materials, 2011, 467/468/469:1691-1696.
[28] 尹莉莉. 海上无人系统不确定环境认知方法研究[D]. 哈尔滨:哈尔滨工程大学, 2015.
[29] Zhang R B, Yin L. Situation cognitive in adjustable autonomy system theory and application[C]//Advances in Swarm Intelligence. Cham, Switzerland:Springer, 2012:308-315.
[30] Miller J, Carter D, Kolitz S. Large-scale dynamic observation planning for unmanned surface vessels[C]//AIAA Infotech@Aerospace Conference and AIAA Unmanned Unlimited Conference. Reston:American Institute of Aeronautics and Astronautics, 2007, https://arc.aiaa.org/doi/abs/10.2514/6.2009-1951.
[31] Breivik M, Hovstein V E, FossenTI. Straight-line target tracking for unmanned surface vehicles[J]. Modeling, Identification and Control, 2008, 29(4), 131-149.
[32] Bertram V. Unmanned surface vehicles-a survey[J]. Skibsteknisk Selskab, Copenhagen, Denmark, 2008, 1:1-14.
[33] Mousazadeh H, Jafarbiglu H, Abdolmaleki H, et al. Developing a navigation, guidance and obstacle avoidance algorithm for an Unmanned Surface Vehicle(USV) by algorithms fusion[J]. Ocean Engineering, 2018, 159:56-65.
[34] Naeem W, Xu T, Sutton R, et al. The design of anavigation, guidance, and control system for anunmanned surface vehicle for environmental monitoring[J]. Proceedings of the Institution of Mechanical Engineers, Part M:Journal of Engineeringfor the Maritime Environment, 2008, 222(2):67-79.
[35] Alves J, Oliveira P, Oliveira R, et al. Vehicle and mission control of the DELFIM autonomous surface craft[C]. Conference on Control & Automation. Piscataway, NJ:IEEE, 2006.
[36] Fraunhofer C M L. Maritime unmanned navigation through intelligence in networks[R]. Hamburg:Fraunhofer CML, 2016.
[37] "海翼1号"完成阶段试验[EB/OL]. (2015-06-26)[2019-12-26]. http://www.cnshipnet.com/news/12/55441.html.
[38] 霍萍."天行一号" 惊艳问世的背后[EB/OL]. (2017-12-15)[2019-12-26]. http://wemedia.ifeng.com/41130264/wemedia.shtml.
[39] Larson J, Bruch M, Ebken J. Autonomous navigation and obstacle avoidance for unmanned surface vehicles[C]//Unmanned Systems Technology VⅢ. Bellingham:International Society for Optics and Photonics, 2006, 6230:623007.
[40] Onunka C, Nnadozie R C. Modelling the performance of USV manoeuvring andtarget tracking:An approach using frequency modulated continuous wave radar rotary system[J]. Springer Plus, 2013, 2(1):184.
[41] 余必秀. 基于多传感器的内河无人测量船航行环境感知系统研究[D]. 武汉:武汉理工大学, 2018.
[42] Ruiz A R J, Granja F S. A short-range ship navigation system based on ladar imaging and target tracking for improved safety and efficiency[J]. IEEE Transactionson Intelligent Transportation Systems, 2009, 10(1):186-197.
[43] Tang P P, Zhang R B, Liu D L, et al. Local reactive obstacle avoidance approach for high-speed unmanned surface vehicle[J]. Ocean Engineering, 2015, 106:128-140.
[44] 李小毛, 张鑫, 王文涛, 等. 基于3D激光雷达的无人水面艇海上目标检测[J]. 上海大学学报, 2017, 23(1):27-36.
[45] 王贵槐, 谢朔, 柳晨光, 等. 基于激光雷达的内河无人船障碍物识别方法[J]. 光学技术, 2018, 44(5):602-608.
[46] 刘清宇, 蔡志明. 发展新型声呐系统的几个科学问题[J]. 声学学报, 2019, 44(2):209-213.
[47] Dzikowicz B R, Hefner B T, Leasko R A. Navigation and sonar applications of an acoustical spiral wave front beacon[J]. Acoustical Society of America Journal, 2011, 130(4):2527.
[48] Chen J, Guo Y, Huang C, et al. An obstacle avoidance algorithm designed for USV based on single beam sonar and fuzzy controlC]//IEEE International Conference on Robotics and Biomimetics. Piscataway, NJ:IEEE, 2013:2446-2451.
[49] Fawzia M, Azhar F, Ningsih A K, et al. SI-PENYU:Sistem pengelolaan kelautan berupa USV semi-automatic pendeteksi minyak dan ikan[C/OL]. Program Kreativitas Mahasiswa-Karsa Cipta, 2013. https://www.neliti.com/publications/170301/si-penyu-sistem-pengelolaankelautan-berupa-usv-semi-automatic-pendeteksi-min yak.
[50] Li H, Dong Y, He X, et al. A sonar image mosaicing algorithm based on improved SIFT for USV[C]//2014 IEEE International Conference on Mechatronics and Automation. Piscataway, NJ:IEEE, 2014.
[51] Nikolakopoulos K G, Lampropoulou P, Fakiris E, et al. Synergistic use of UAV and USV data and petrographic analyses for the investigation of beachrock formations:A case study from Syros Island, Aegean Sea, Greece[J]. Minerals, 2018, 8(11):534.
[52] Gal O. Automatic obstacle detection for USV's navigation using vision sensors[C]//Procedings of the 4th International Robotic Sailing Conference. Berlin Heidelberg:Springer, 2011:127-140.
[53] Ma Z, Wen J, Liang X. Video image clarity algorithm research of USV visual system under the sea fog[M]//Advances in Swarm Intelligence. Berlin Heidelberg:Springer, 2013.
[54] Wolf M, Assad C, Kuwata Y, et al. 360-degree visual detection and target tracking on an autonomous surface vehicle[J]. Journal of Field Robotics, 2010, 27(6):819-833.
[55] 刘康克, 熊亚洲, 李刚, 等. 基于视觉图像的水面机器人波浪检测方法[J]. 计算机工程与应用, 2014, 50(16):211-215.
[56] 丁畅. 复杂海况环境下海面图像增强方法研究[D]. 大连:大连海事大学, 2018.
[57] 王斌. 海面目标红外检测方法研究[D]. 大连:大连海事大学, 2018.
[58] 李峰, 易宏. 无人水面艇在水上交通安全监管中的应用[J]. 中国舰船研究, 2018, 13(6):27-33.
[59] El-Fallah A, Zatezalo A, Mahler R, et al. Multi-vehicle decentralized fusion and tracking[C]//Signal Processing, Sensor Fusion, and Target Recognition XXI. Bellingham:International Society for Optics and Photonics, 2012, 8392:83920I
[60] Liu W, Liu Y, Bucknall R. A robust localization method for unmanned surface vehicle (USV) navigation using Fuzzy Adaptive Kalman Filtering[J]. IEEE Access, 2019(7):46071-46083.
[61] 陈鹏, 王少朋, 李玉婷, 等. 浅谈大数据背景下海洋地理信息系统的发展[J]. 海洋信息, 2019, 34(2):14-18.
[62] 刘清宇. 海洋中尺度现象下的声传播研究[D]. 哈尔滨:哈尔滨工程大学, 2006.
[63] Savitz S, Blickstein I, Buryk P, et al. US Navy employment options for unmanned surface vehicles(USVs)[R]. Santa Monica, CA:National Defense Research Institute, 2013.
[64] 张凯, 朱利锋. 陆军无人船艇功能运用探要[J]. 军事交通学院学报, 2018, 20(9):40-44.
文章导航

/