专题:热管理技术及应用

基于液态金属对流的电子设备冷却研究进展

  • 常向廷 ,
  • 董伟 ,
  • 韩俊杰 ,
  • 董进喜 ,
  • 刘治虎 ,
  • 赵航
展开
  • 航空工业集团公司西安航空计算技术研究所, 西安 710065
常向廷,高级工程师,研究方向为电子设备热管理,电子信箱:cxting20232023@163.com

收稿日期: 2024-01-18

  修回日期: 2024-09-17

  网络出版日期: 2025-01-15

基金资助

中国航空研究院航空科学基金项目(2023Z008031001)

Research progress on cooling of electronic equipment based on liquid metal convection

  • CHANG Xiangting ,
  • DONG Wei ,
  • HAN Junjie ,
  • DONG Jinxi ,
  • LIU Zhihu ,
  • ZHAO Hang
Expand
  • Aeronautics Computing Technique Research Institute, Aviation Industry Corporation of China, Xi'an 710065, China

Received date: 2024-01-18

  Revised date: 2024-09-17

  Online published: 2025-01-15

摘要

受益于液态金属优异的导热和流动性能,液态金属对流冷却为电子器件和设备的高热流密度热管理难题提供了新的解决方案。介绍了液态金属对流的传热和流动特性,相比于传统工质,液态金属的高热导率使得对流的总体热阻更低,因此产生更好的传热效果。总结了基于液态金属对流的驱动技术、复合式冷却技术和强化冷却技术的相关研究进展,简述了液态金属对流在电子设备冷却领域的应用现状,并展望了液态金属对流冷却的发展前景。

本文引用格式

常向廷 , 董伟 , 韩俊杰 , 董进喜 , 刘治虎 , 赵航 . 基于液态金属对流的电子设备冷却研究进展[J]. 科技导报, 2024 , 42(24) : 30 -45 . DOI: 10.3981/j.issn.1000-7857.2024.01.00124

Abstract

Benefiting from the excellent thermal conductivity and flow properties of liquid metal, liquid metal convection cooling offers a new solution to the high heat flux thermal management of electronic devices and equipment. In this paper, the heat transfer and flow characteristics of liquid metal convection were introduced. Compared to traditional fluids, the high thermal conductivity of liquid metals resulted in lower overall thermal resistance, and the heat transfer performance was better. The relevant research progress of driving technology, hybrid cooling technology and heat transfer enhancement technology based on liquid metal convection were summarized. The application status of liquid metal convection in the field of electronic equipment cooling was briefly described. Finally, the challenges and development prospects of liquid metal convection cooling were discussed.

参考文献

[1] Ball P. Computer engineering: Feeling the heat[J]. Nature, 2012, 492(7428): 174-176.
[2] Waldrop M M. The chips are down for Moore's law[J]. Nature, 2016, 530(7589): 144-147.
[3] Theis T N, Wong H S P. The end of Moore's law: A new beginning for information technology[J]. Computing in Science & Engineering, 2017, 19(2): 41-50.
[4] Murshed S M S, De Castro C A N. A critical review of traditional and emerging techniques and fluids for electronics cooling[J]. Renewable and Sustainable Energy Reviews, 2017, 78: 821-833.
[5] Agostini B, Fabbri M, Park J E, et al. State of the art of high heat flux cooling technologies[J]. Heat Transfer Engineering, 2007, 28(4): 258-281.
[6] Bar-Cohen A, Maurer J J, Sivananthan A. Near-junction microfluidic cooling for wide bandgap devices[J]. MRS Advances, 2016, 1(2): 181-195.
[7] Rodgers P, Eveloy V, Pecht M G. Limits of air-cooling: Status and challenges[C]//Proceedings of Semiconductor Thermal Measurement and Management IEEE Twenty First Annual IEEE Symposium. Piscataway, NJ: IEEE, 2005: 116-124.
[8] Ebrahimi K, Jones G F, Fleischer A S. A review of data center cooling technology, operating conditions and the corresponding low-grade waste heat recovery opportunities[J]. Renewable and Sustainable Energy Reviews, 2014, 31: 622-638.
[9] Faghri A. Heat pipes: Review, opportunities and challenges[J]. Frontiers in Heat Pipes(FHP), 2014, 5(1): 1-48.
[10] Hassan I, Phutthavong P, Abdelgawad M. Microchannel heat sinks: An overview of the state-of-the-art[J]. Microscale Thermophysical Engineering, 2004, 8(3): 183- 205.
[11] Ekkad S V, Singh P. A modern review on jet impingement heat transfer methods[J]. Journal of Heat Transfer, 2021, 143(6): 064001.
[12] Yin J, Wang S M, Sang X H, et al. Spray cooling as a high-efficient thermal management solution: A review [J]. Energies, 2022, 15(22): 8547.
[13] Venkatesh S, Kumar A, Bhattacharya A, et al. Ionic wind review-2020: Advancement and application in thermal management[J]. Sādhanā, 2021, 46(3): 165.
[14] Hales A, Jiang X. A review of piezoelectric fans for low energy cooling of power electronics[J]. Applied Energy, 2018, 215: 321-337.
[15] Deng Y G, Liu J. Design of practical liquid metal cooling device for heat dissipation of high performance CPUs [J]. Journal of Electronic Packaging, 2010, 132(3): 031009.
[16] Choi S U S, Eastman J A. Enhancing thermal conductivity of fluids with nanoparticles[R]. IL, USA: Argonne National Lab(ANL), 1995.
[17] Buongiorno J. Convective transport in nanofluids[J]. Journal of Heat Transfer, 2006, 128(3): 240-250.
[18] Yang X H, Liu J. Advances in liquid metal science and technology in chip cooling and thermal management[M]// Advances in Heat Transfer. Amsterdam: Elsevier, 2018: 187-300.
[19] Yan J J, Lu Y, Chen G J, et al. Advances in liquid metals for biomedical applications[J]. Chemical Society Reviews, 2018, 47(8): 2518-2533.
[20] Zhu L F, Wang B, Handschuh-Wang S, et al. Liquid metal-based soft microfluidics[J]. Small, 2020, 16(9): 1903841.
[21] Khoshmanesh K, Tang S Y, Zhu J Y, et al. Liquid metal enabled microfluidics[J]. Lab on a Chip, 2017, 17(6): 974-993.
[22] 周宗和, 宋杨, 杨小虎, 等. 基于液态金属的高性能热管理技术[J]. 节能基础科学, 2020, 39(3): 124-127.
[23] 杨小虎, 刘静. 液态金属高性能冷却技术: 发展历程与研究前沿[J]. 科技导报, 2018, 36(15): 54-66.
[24] Tian Z X, Wang C L, Guo K L, et al. A review of liquid metal high temperature heat pipes: Theoretical model, design, and application[J]. International Journal of Heat and Mass Transfer, 2023, 214: 124434.
[25] Liu G L, Liu J. Convective cooling of compact electronic devices via liquid metals with low melting points[J]. Journal of Heat Transfer, 2021, 143(5): 050801.
[26] 邓月光. 高性能液态金属CPU散热器的理论与实验研究[D]. 北京: 中国科学院理化技术研究所, 2012.
[27] Miner A, Ghoshal U. Cooling of high-power-density microdevices using liquid metal coolants[J]. Applied Physics Letters, 2004, 85(3): 506-508.
[28] Deng Y G, Jiang Y, Liu J. Low-melting-point liquid metal convective heat transfer: A review[J]. Applied Thermal Engineering, 2021, 193: 117021.
[29] 李振明, 刘伟, 赵勇青, 等. 基于液态金属的高热流密度电力设备冷却实验研究[J]. 电工电能新技术, 2017, 36(4): 66-70.
[30] Deng Y G, Liu J. A liquid metal cooling system for the thermal management of high power LEDs[J]. International Communications in Heat and Mass Transfer, 2010, 37(7): 788-791.
[31] Heinzel A, Hering W, Konys J, et al. Liquid metals as efficient high-temperature heat-transport fluids[J]. Energy Technology, 2017, 5(7): 1026-1036.
[32] Grötzbach G. Challenges in low-Prandtl number heat transfer simulation and modelling[J]. Nuclear Engineering and Design, 2013, 264: 41-55.
[33] Bhushan S, Elmellouki M, Jamal T, et al. Assessment of low-and high-fidelity turbulence models for heat transfer predictions in low-prandlt number flows[J]. Nuclear Engineering and Design, 2022, 388: 111614.
[34] Zhao X H, Jiaqiang E, Zhang Z Q, et al. A review on heat enhancement in thermal energy conversion and management using Field Synergy Principle[J]. Applied Energy, 2020, 257: 113995.
[35] Li Z X, Guo Z Y. Field synergy theory for convective heat transfer optimization[M]. Beijing: Science Press, 2010.
[36] Ma K Q, Liu J. Liquid metal cooling in thermal management of computer chips[J]. Frontiers of Energy and Power Engineering in China, 2007, 1(4): 384-402.
[37] Deng Y G, Liu J. Heat spreader based on room-temperature liquid metal[J]. Journal of Thermal Science and Engineering Applications, 2012, 4(2): 1.
[38] Deng Y G, Liu J. Optimization and evaluation of a highperformance liquid metal CPU cooling product[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2013, 3(7): 1171-1177.
[39] Liu J, Zhou Y X, Lv Y G, et al. Liquid metal based miniaturized chip-cooling device driven by electromagnetic pump[C]//Proceedings of Electronic and Photonic Packaging, Electrical Systems Design and Photonics, and Nanotechnology. ASMEDC, 2005, 42177: 501-510.
[40] Kim B Y, Jeong J Y. Electromagnetic pump in sodium thermal-hydraulic test facility: Design and control issues [C]//Proceedings of 201717th International Conference on Control, Automation and Systems (ICCAS). Piscataway, NJ: IEEE, 2017: 272-275.
[41] Deng Y G, Zhang M M, Jiang Y, et al. Two-stage multichannel liquid-metal cooling system for thermal management of high-heat-flux-density chip array[J]. Energy Conversion and Management, 2022, 259: 115591.
[42] Wang Y S, Zhang P J, Tan S C, et al. Experimental and numerical analysis on a compact liquid metal blade heat dissipator with twin stage electromagnetic pumps[J]. International Communications in Heat and Mass Transfer, 2019, 104: 15-22.
[43] Sun P, Liu C K, He Z Z. A compact Double-spiral electromagnetic pump for liquid metal cooling[J]. Annals of Nuclear Energy, 2023, 180: 109486.
[44] Al-Habahbeh O M, Al-Saqqa M, Safi M, et al. Review of magnetohydrodynamic pump applications[J]. Alexandria Engineering Journal, 2016, 55(2): 1347-1358.
[45] Deng Y G, Liu J. An experimental investigation of liquid metal thermal joint[J]. Energy Conversion and Management, 2012, 56: 152-156.
[46] Ma K Q, Liu J. Heat-driven liquid metal cooling device for the thermal management of a computer chip[J]. Journal of Physics D: Applied Physics, 2007, 40(15): 4722- 4729.
[47] Li P P, Liu J. Self-driven electronic cooling based on thermosyphon effect of room temperature liquid metal[J]. Journal of Electronic Packaging, 2011, 133(4): 041009.
[48] Li P P, Liu J, Zhou Y X. Design of a self-driven liquid metal cooling device for heat dissipation of hot chips in a closed cabinet[J]. Journal of Thermal Science and Engineering Applications, 2014, 6(1): 011009.
[49] 罗曼丽, 刘静. 液态金属热虹吸散热系统管道尺寸效应研究[J]. 电子机械工程, 2013, 29(4): 13-17.
[50] Tang J B, Wang J J, Liu J, et al. A volatile fluid assisted thermo-pneumatic liquid metal energy harvester[J]. Applied Physics Letters, 2016, 108(2): 023903.
[51] He Y H, You J, Dickey M D, et al. Controllable flow and manipulation of liquid metals[J]. Advanced Functional Materials, 2023: 2309614.
[52] Li F X, Kuang S L, Li X P, et al. Magnetically- and electrically-controllable functional liquid metal droplets [J]. Advanced Materials Technologies, 2019, 4(3): 1800694.
[53] Liu C, Li D K, Huang J X, et al. High-performance magnetic and electric control of liquid metal droplets[J]. Langmuir, 2023, 39(21): 7495-7502.
[54] Hu L, Wang H Z, Wang X F, et al. Magnetic liquid metals manipulated in the three-dimensional free space[J]. ACS Applied Materials & Interfaces, 2019, 11(8): 8685- 8692.
[55] Fang W Q, He Z Z, Liu J. Electro-hydrodynamic shooting phenomenon of liquid metal stream[J]. Applied Physics Letters, 2014, 105(13): 134104.
[56] Tan S C, Zhou Y X, Wang L, et al. Electrically driven chip cooling device using hybrid coolants of liquid metal and aqueous solution[J]. Science China Technological Sciences, 2016, 59(2): 301-308.
[57] Wang L, Liu J. Electromagnetic rotation of a liquid metal sphere or pool within a solution[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 471(2178): 20150177.
[58] Sheng L, Zhang J, Liu J. Diverse transformations of liquid metals between different morphologies[J]. Advanced Materials, 2014, 26(34): 6036-6042.
[59] Syed N, Zavabeti A, Mohiuddin M, et al. Sonication-assisted synthesis of Gallium oxide suspensions featuring trap state absorption: Test of photochemistry[J]. Advanced Functional Materials, 2017, 27(43): 1702295.
[60] Tang S Y, Qiao R R, Yan S, et al. Microfluidic mass production of stabilized and stealthy liquid metal nanoparticles[J]. Small, 2018, 14(21): 1800118.
[61] Zhao X, Tang J B, Liu J. Electrically switchable surface waves and bouncing droplets excited on a liquid metal bath[J]. Physical Review Fluids, 2018, 3(12): 124804.
[62] Tang J M, Tang J B, Mayyas M, et al. Liquid-metal-enabled mechanical-energy-induced CO2 conversion[J]. Advanced Materials, 2022, 34(1): 2105789.
[63] Chechetka S A, Yu Y, Zhen X, et al. Light-driven liquid metal nanotransformers for biomedical theranostics [J]. Nature Communications, 2017, 8(1): 15432.
[64] Tang X K, Tang S Y, Sivan V, et al. Photochemically induced motion of liquid metal marbles[J]. Applied Physics Letters, 2013, 103(17): 174104.
[65] Wang D L, Gao C Y, Si T Y, et al. Near-infrared light propelled motion of needlelike liquid metal nanoswimmers[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 611: 125865.
[66] Yang X H, Liu J. Liquid metal enabled combinatorial heat transfer science: Toward unconventional extreme cooling[J]. Frontiers in Energy, 2018, 12(2): 259-275.
[67] 邓月光, 张曼曼, 姜毅. 复合式液态金属热管理技术研究进展[C]//中国材料大会. 厦门: 中国材料研究学会, 2021: 141-149.
[68] Deng Y G, Liu J. Hybrid liquid metal-water cooling system for heat dissipation of high power density microdevices[J]. Heat and Mass Transfer, 2010, 46(11): 1327- 1334.
[69] Mei S F, Deng Z S, Liu J. Hybrid mini/micro-channel heat sink using liquid metal and water as coolants[C]//International Electronic Packaging Technical Conference and Exhibition. San Francisco, USA: American Society of Mechanical Engineers, 2015, 56895: V002T06A010.
[70] Hao T T, Ma H B, Ma X H. Experimental investigation of oscillating heat pipe with hybrid fluids of liquid metal and water[J]. Journal of Heat Transfer, 2019, 141(7): 071802.
[71] Tuckerman D B, Pease R F W. High-performance heat sinking for VLSI[J]. IEEE Electron Device Letters, 1981, 2(5): 126-129.
[72] Deng Y G, Liu J, Zhou Y X. Liquid metal based mini/ micro channel cooling device[C]//International Conference on Nanochannels, Microchannels, and Minichannels. Pohang, South Korea: American Society of Mechanical Engineers, 2009, 43499: 253-259.
[73] Muhammad A, Selvakumar D, Wu J. Numerical investigation of laminar flow and heat transfer in a liquid metal cooled mini-channel heat sink[J]. International Journal of Heat and Mass Transfer, 2020, 150: 119265.
[74] Zhang R, Hodes M, Lower N, et al. Water-based microchannel and galinstan-based minichannel cooling beyond 1 kW/cm2 heat flux[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2015, 5(6): 762-770.
[75] Xiang X, Yang J S, Fan A W, et al. A comparison between cooling performances of water-based and galliumbased micro-channel heat sinks with the same dimensions[J]. Applied Thermal Engineering, 2018, 137: 1-10.
[76] Wu T, Wang L Z, Tang Y C, et al. Flow and heat transfer performances of liquid metal based microchannel heat sinks under high temperature conditions[J]. Micromachines, 2022, 13(1): 95.
[77] Chen Z W, Qian P, Huang Z Z, et al. Study on flow and heat transfer of liquid metal in a new top-slotted microchannel heat sink[J]. IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2021, 621(1): 012054.
[78] Chen Z W, Qian P, Huang Z Z, et al. Study on flow and heat transfer of liquid metal in the microchannel heat sink[J]. International Journal of Thermal Sciences, 2023, 183: 107840.
[79] He Z Z, Xue X, Liu J. Liquid metal alloy based vascular-like microchannel networks for the thermal management of electronics[C]//Proceedings of ASME 2014 International Mechanical Engineering Congress and Exposition. Montreal, Canada: American Society of Mechanical Engineers, 2014: V08BT10A083.
[80] Zhang M K, Zhang X D, Guo L N, et al. Flow and thermal modeling of liquid metal in expanded microchannel heat sink[J]. Frontiers in Energy, 2023, 17(6): 796-810.
[81] Silverman I, Arenshtam A, Kijel D, et al. High heat flux accelerator targets cooling with liquid-metal jet impingement[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2005, 241(1/2/3/4): 1009-1013.
[82] Silverman I, Yarin A L, Reznik S N, et al. High heatflux accelerator targets: Cooling with liquid metal jet impingement[J]. International Journal of Heat and Mass Transfer, 2006, 49(17/18): 2782-2792.
[83] Xiang X, Liu W, Fan A W. Comparison between the cooling performances of micro-jet impingement systems using liquid metal and water as coolants for high power electronics[J]. International Journal of Thermal Sciences, 2022, 173: 107375.
[84] Ma K Q, Liu J. Nano liquid-metal fluid as ultimate coolant[J]. Physics Letters A, 2007, 361(3): 252-256.
[85] Zhou X M, Li X F, Cheng K Y, et al. Numerical study of heat transfer enhancement of nano liquid-metal fluid forced convection in circular tube[J]. Journal of Heat Transfer, 2018, 140(8): 081901.
[86] Khan Y, Sarowar M T, Mobarrat M, et al. Performance comparison of a microchannel heat sink using different nano-liquid metal fluid coolant: A numerical study[J]. Journal of Thermal Science and Engineering Applications, 2022, 14(9): 091014.
[87] Zhou X M, Jiang Y N, Li X F, et al. Numerical investigation of heat transfer enhancement and entropy generation of natural convection in a cavity containing nano liquid-metal fluid[J]. International Communications in Heat and Mass Transfer, 2019, 106: 46-54.
[88] Zhou X M, Jiang Y Q, Wang Y, et al. Comprehensive heat transfer performance analysis of liquid metal based nanofluid laminar flow in circular tube[J]. International Journal of Mechanical Sciences, 2020, 175: 105530.
[89] Qi C, Wang G Q, Ma Y F, et al. Experimental research on stability and natural convection of TiO2-water nanofluid in enclosures with different rotation angles[J]. Nanoscale Research Letters, 2017, 12(1): 396.
[90] Yang X H, Tan S C, Liu J. Thermal management of Liion battery with liquid metal[J]. Energy Conversion and Management, 2016, 117: 577-585.
[91] Ghoshal U, Grimm D, Ibrani S, et al. High-performance liquid metal cooling loops[C]//Proceedings of Semiconductor Thermal Measurement and Management IEEE Twenty First Annual IEEE Symposium, 2005. Piscataway, NJ: IEEE, 2005: 16-19.
[92] Teglet T. Liquid metal cooling to revolutionize CPU cooling[EB/OL]. (2008-07-18) [2023-11-30]. https://news. softpedia.com/news/Liquid-Metal-Cooling-to-Revolution ize-CPU-Cooling-90325.shtml.
[93] Hilbert Hagedoorn. Danamics LMX Superleggera review [EB/OL]. (2010-06-08) [2023-11-30]. https://www. guru3d.com/review/danamics-lmx-superleggera-review/pag e-2/.
[94] Vetrovec J. Quasi-passive heat sink for high-power laser diodes[C]//High-Power Diode Laser Technology and Applications VII. San Jose, USA: SPIE, 2009, 7198: 104-113.
[95] Vetrovec J, Litt A S, Copeland D A, et al. Liquid metal heat sink for high-power laser diodes[C]//High-Power Diode Laser Technology and Applications Ⅺ. San Francisco, USA: SPIE, 2013, 8605: 95-101.
[96] Vetrovec J. High-performance heat sink for interfacing hybrid electric vehicles inverters to engine coolant loop [R]. Detroit, USA: SAE Technical Paper, 2011.
文章导航

/