[1] Ball P. Computer engineering: Feeling the heat[J]. Nature, 2012, 492(7428): 174-176.
[2] Waldrop M M. The chips are down for Moore's law[J]. Nature, 2016, 530(7589): 144-147.
[3] Theis T N, Wong H S P. The end of Moore's law: A new beginning for information technology[J]. Computing in Science & Engineering, 2017, 19(2): 41-50.
[4] Murshed S M S, De Castro C A N. A critical review of traditional and emerging techniques and fluids for electronics cooling[J]. Renewable and Sustainable Energy Reviews, 2017, 78: 821-833.
[5] Agostini B, Fabbri M, Park J E, et al. State of the art of high heat flux cooling technologies[J]. Heat Transfer Engineering, 2007, 28(4): 258-281.
[6] Bar-Cohen A, Maurer J J, Sivananthan A. Near-junction microfluidic cooling for wide bandgap devices[J]. MRS Advances, 2016, 1(2): 181-195.
[7] Rodgers P, Eveloy V, Pecht M G. Limits of air-cooling: Status and challenges[C]//Proceedings of Semiconductor Thermal Measurement and Management IEEE Twenty First Annual IEEE Symposium. Piscataway, NJ: IEEE, 2005: 116-124.
[8] Ebrahimi K, Jones G F, Fleischer A S. A review of data center cooling technology, operating conditions and the corresponding low-grade waste heat recovery opportunities[J]. Renewable and Sustainable Energy Reviews, 2014, 31: 622-638.
[9] Faghri A. Heat pipes: Review, opportunities and challenges[J]. Frontiers in Heat Pipes(FHP), 2014, 5(1): 1-48.
[10] Hassan I, Phutthavong P, Abdelgawad M. Microchannel heat sinks: An overview of the state-of-the-art[J]. Microscale Thermophysical Engineering, 2004, 8(3): 183- 205.
[11] Ekkad S V, Singh P. A modern review on jet impingement heat transfer methods[J]. Journal of Heat Transfer, 2021, 143(6): 064001.
[12] Yin J, Wang S M, Sang X H, et al. Spray cooling as a high-efficient thermal management solution: A review [J]. Energies, 2022, 15(22): 8547.
[13] Venkatesh S, Kumar A, Bhattacharya A, et al. Ionic wind review-2020: Advancement and application in thermal management[J]. Sādhanā, 2021, 46(3): 165.
[14] Hales A, Jiang X. A review of piezoelectric fans for low energy cooling of power electronics[J]. Applied Energy, 2018, 215: 321-337.
[15] Deng Y G, Liu J. Design of practical liquid metal cooling device for heat dissipation of high performance CPUs [J]. Journal of Electronic Packaging, 2010, 132(3): 031009.
[16] Choi S U S, Eastman J A. Enhancing thermal conductivity of fluids with nanoparticles[R]. IL, USA: Argonne National Lab(ANL), 1995.
[17] Buongiorno J. Convective transport in nanofluids[J]. Journal of Heat Transfer, 2006, 128(3): 240-250.
[18] Yang X H, Liu J. Advances in liquid metal science and technology in chip cooling and thermal management[M]// Advances in Heat Transfer. Amsterdam: Elsevier, 2018: 187-300.
[19] Yan J J, Lu Y, Chen G J, et al. Advances in liquid metals for biomedical applications[J]. Chemical Society Reviews, 2018, 47(8): 2518-2533.
[20] Zhu L F, Wang B, Handschuh-Wang S, et al. Liquid metal-based soft microfluidics[J]. Small, 2020, 16(9): 1903841.
[21] Khoshmanesh K, Tang S Y, Zhu J Y, et al. Liquid metal enabled microfluidics[J]. Lab on a Chip, 2017, 17(6): 974-993.
[22] 周宗和, 宋杨, 杨小虎, 等. 基于液态金属的高性能热管理技术[J]. 节能基础科学, 2020, 39(3): 124-127.
[23] 杨小虎, 刘静. 液态金属高性能冷却技术: 发展历程与研究前沿[J]. 科技导报, 2018, 36(15): 54-66.
[24] Tian Z X, Wang C L, Guo K L, et al. A review of liquid metal high temperature heat pipes: Theoretical model, design, and application[J]. International Journal of Heat and Mass Transfer, 2023, 214: 124434.
[25] Liu G L, Liu J. Convective cooling of compact electronic devices via liquid metals with low melting points[J]. Journal of Heat Transfer, 2021, 143(5): 050801.
[26] 邓月光. 高性能液态金属CPU散热器的理论与实验研究[D]. 北京: 中国科学院理化技术研究所, 2012.
[27] Miner A, Ghoshal U. Cooling of high-power-density microdevices using liquid metal coolants[J]. Applied Physics Letters, 2004, 85(3): 506-508.
[28] Deng Y G, Jiang Y, Liu J. Low-melting-point liquid metal convective heat transfer: A review[J]. Applied Thermal Engineering, 2021, 193: 117021.
[29] 李振明, 刘伟, 赵勇青, 等. 基于液态金属的高热流密度电力设备冷却实验研究[J]. 电工电能新技术, 2017, 36(4): 66-70.
[30] Deng Y G, Liu J. A liquid metal cooling system for the thermal management of high power LEDs[J]. International Communications in Heat and Mass Transfer, 2010, 37(7): 788-791.
[31] Heinzel A, Hering W, Konys J, et al. Liquid metals as efficient high-temperature heat-transport fluids[J]. Energy Technology, 2017, 5(7): 1026-1036.
[32] Grötzbach G. Challenges in low-Prandtl number heat transfer simulation and modelling[J]. Nuclear Engineering and Design, 2013, 264: 41-55.
[33] Bhushan S, Elmellouki M, Jamal T, et al. Assessment of low-and high-fidelity turbulence models for heat transfer predictions in low-prandlt number flows[J]. Nuclear Engineering and Design, 2022, 388: 111614.
[34] Zhao X H, Jiaqiang E, Zhang Z Q, et al. A review on heat enhancement in thermal energy conversion and management using Field Synergy Principle[J]. Applied Energy, 2020, 257: 113995.
[35] Li Z X, Guo Z Y. Field synergy theory for convective heat transfer optimization[M]. Beijing: Science Press, 2010.
[36] Ma K Q, Liu J. Liquid metal cooling in thermal management of computer chips[J]. Frontiers of Energy and Power Engineering in China, 2007, 1(4): 384-402.
[37] Deng Y G, Liu J. Heat spreader based on room-temperature liquid metal[J]. Journal of Thermal Science and Engineering Applications, 2012, 4(2): 1.
[38] Deng Y G, Liu J. Optimization and evaluation of a highperformance liquid metal CPU cooling product[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2013, 3(7): 1171-1177.
[39] Liu J, Zhou Y X, Lv Y G, et al. Liquid metal based miniaturized chip-cooling device driven by electromagnetic pump[C]//Proceedings of Electronic and Photonic Packaging, Electrical Systems Design and Photonics, and Nanotechnology. ASMEDC, 2005, 42177: 501-510.
[40] Kim B Y, Jeong J Y. Electromagnetic pump in sodium thermal-hydraulic test facility: Design and control issues [C]//Proceedings of 201717th International Conference on Control, Automation and Systems (ICCAS). Piscataway, NJ: IEEE, 2017: 272-275.
[41] Deng Y G, Zhang M M, Jiang Y, et al. Two-stage multichannel liquid-metal cooling system for thermal management of high-heat-flux-density chip array[J]. Energy Conversion and Management, 2022, 259: 115591.
[42] Wang Y S, Zhang P J, Tan S C, et al. Experimental and numerical analysis on a compact liquid metal blade heat dissipator with twin stage electromagnetic pumps[J]. International Communications in Heat and Mass Transfer, 2019, 104: 15-22.
[43] Sun P, Liu C K, He Z Z. A compact Double-spiral electromagnetic pump for liquid metal cooling[J]. Annals of Nuclear Energy, 2023, 180: 109486.
[44] Al-Habahbeh O M, Al-Saqqa M, Safi M, et al. Review of magnetohydrodynamic pump applications[J]. Alexandria Engineering Journal, 2016, 55(2): 1347-1358.
[45] Deng Y G, Liu J. An experimental investigation of liquid metal thermal joint[J]. Energy Conversion and Management, 2012, 56: 152-156.
[46] Ma K Q, Liu J. Heat-driven liquid metal cooling device for the thermal management of a computer chip[J]. Journal of Physics D: Applied Physics, 2007, 40(15): 4722- 4729.
[47] Li P P, Liu J. Self-driven electronic cooling based on thermosyphon effect of room temperature liquid metal[J]. Journal of Electronic Packaging, 2011, 133(4): 041009.
[48] Li P P, Liu J, Zhou Y X. Design of a self-driven liquid metal cooling device for heat dissipation of hot chips in a closed cabinet[J]. Journal of Thermal Science and Engineering Applications, 2014, 6(1): 011009.
[49] 罗曼丽, 刘静. 液态金属热虹吸散热系统管道尺寸效应研究[J]. 电子机械工程, 2013, 29(4): 13-17.
[50] Tang J B, Wang J J, Liu J, et al. A volatile fluid assisted thermo-pneumatic liquid metal energy harvester[J]. Applied Physics Letters, 2016, 108(2): 023903.
[51] He Y H, You J, Dickey M D, et al. Controllable flow and manipulation of liquid metals[J]. Advanced Functional Materials, 2023: 2309614.
[52] Li F X, Kuang S L, Li X P, et al. Magnetically- and electrically-controllable functional liquid metal droplets [J]. Advanced Materials Technologies, 2019, 4(3): 1800694.
[53] Liu C, Li D K, Huang J X, et al. High-performance magnetic and electric control of liquid metal droplets[J]. Langmuir, 2023, 39(21): 7495-7502.
[54] Hu L, Wang H Z, Wang X F, et al. Magnetic liquid metals manipulated in the three-dimensional free space[J]. ACS Applied Materials & Interfaces, 2019, 11(8): 8685- 8692.
[55] Fang W Q, He Z Z, Liu J. Electro-hydrodynamic shooting phenomenon of liquid metal stream[J]. Applied Physics Letters, 2014, 105(13): 134104.
[56] Tan S C, Zhou Y X, Wang L, et al. Electrically driven chip cooling device using hybrid coolants of liquid metal and aqueous solution[J]. Science China Technological Sciences, 2016, 59(2): 301-308.
[57] Wang L, Liu J. Electromagnetic rotation of a liquid metal sphere or pool within a solution[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 471(2178): 20150177.
[58] Sheng L, Zhang J, Liu J. Diverse transformations of liquid metals between different morphologies[J]. Advanced Materials, 2014, 26(34): 6036-6042.
[59] Syed N, Zavabeti A, Mohiuddin M, et al. Sonication-assisted synthesis of Gallium oxide suspensions featuring trap state absorption: Test of photochemistry[J]. Advanced Functional Materials, 2017, 27(43): 1702295.
[60] Tang S Y, Qiao R R, Yan S, et al. Microfluidic mass production of stabilized and stealthy liquid metal nanoparticles[J]. Small, 2018, 14(21): 1800118.
[61] Zhao X, Tang J B, Liu J. Electrically switchable surface waves and bouncing droplets excited on a liquid metal bath[J]. Physical Review Fluids, 2018, 3(12): 124804.
[62] Tang J M, Tang J B, Mayyas M, et al. Liquid-metal-enabled mechanical-energy-induced CO2 conversion[J]. Advanced Materials, 2022, 34(1): 2105789.
[63] Chechetka S A, Yu Y, Zhen X, et al. Light-driven liquid metal nanotransformers for biomedical theranostics [J]. Nature Communications, 2017, 8(1): 15432.
[64] Tang X K, Tang S Y, Sivan V, et al. Photochemically induced motion of liquid metal marbles[J]. Applied Physics Letters, 2013, 103(17): 174104.
[65] Wang D L, Gao C Y, Si T Y, et al. Near-infrared light propelled motion of needlelike liquid metal nanoswimmers[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 611: 125865.
[66] Yang X H, Liu J. Liquid metal enabled combinatorial heat transfer science: Toward unconventional extreme cooling[J]. Frontiers in Energy, 2018, 12(2): 259-275.
[67] 邓月光, 张曼曼, 姜毅. 复合式液态金属热管理技术研究进展[C]//中国材料大会. 厦门: 中国材料研究学会, 2021: 141-149.
[68] Deng Y G, Liu J. Hybrid liquid metal-water cooling system for heat dissipation of high power density microdevices[J]. Heat and Mass Transfer, 2010, 46(11): 1327- 1334.
[69] Mei S F, Deng Z S, Liu J. Hybrid mini/micro-channel heat sink using liquid metal and water as coolants[C]//International Electronic Packaging Technical Conference and Exhibition. San Francisco, USA: American Society of Mechanical Engineers, 2015, 56895: V002T06A010.
[70] Hao T T, Ma H B, Ma X H. Experimental investigation of oscillating heat pipe with hybrid fluids of liquid metal and water[J]. Journal of Heat Transfer, 2019, 141(7): 071802.
[71] Tuckerman D B, Pease R F W. High-performance heat sinking for VLSI[J]. IEEE Electron Device Letters, 1981, 2(5): 126-129.
[72] Deng Y G, Liu J, Zhou Y X. Liquid metal based mini/ micro channel cooling device[C]//International Conference on Nanochannels, Microchannels, and Minichannels. Pohang, South Korea: American Society of Mechanical Engineers, 2009, 43499: 253-259.
[73] Muhammad A, Selvakumar D, Wu J. Numerical investigation of laminar flow and heat transfer in a liquid metal cooled mini-channel heat sink[J]. International Journal of Heat and Mass Transfer, 2020, 150: 119265.
[74] Zhang R, Hodes M, Lower N, et al. Water-based microchannel and galinstan-based minichannel cooling beyond 1 kW/cm2 heat flux[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2015, 5(6): 762-770.
[75] Xiang X, Yang J S, Fan A W, et al. A comparison between cooling performances of water-based and galliumbased micro-channel heat sinks with the same dimensions[J]. Applied Thermal Engineering, 2018, 137: 1-10.
[76] Wu T, Wang L Z, Tang Y C, et al. Flow and heat transfer performances of liquid metal based microchannel heat sinks under high temperature conditions[J]. Micromachines, 2022, 13(1): 95.
[77] Chen Z W, Qian P, Huang Z Z, et al. Study on flow and heat transfer of liquid metal in a new top-slotted microchannel heat sink[J]. IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2021, 621(1): 012054.
[78] Chen Z W, Qian P, Huang Z Z, et al. Study on flow and heat transfer of liquid metal in the microchannel heat sink[J]. International Journal of Thermal Sciences, 2023, 183: 107840.
[79] He Z Z, Xue X, Liu J. Liquid metal alloy based vascular-like microchannel networks for the thermal management of electronics[C]//Proceedings of ASME 2014 International Mechanical Engineering Congress and Exposition. Montreal, Canada: American Society of Mechanical Engineers, 2014: V08BT10A083.
[80] Zhang M K, Zhang X D, Guo L N, et al. Flow and thermal modeling of liquid metal in expanded microchannel heat sink[J]. Frontiers in Energy, 2023, 17(6): 796-810.
[81] Silverman I, Arenshtam A, Kijel D, et al. High heat flux accelerator targets cooling with liquid-metal jet impingement[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2005, 241(1/2/3/4): 1009-1013.
[82] Silverman I, Yarin A L, Reznik S N, et al. High heatflux accelerator targets: Cooling with liquid metal jet impingement[J]. International Journal of Heat and Mass Transfer, 2006, 49(17/18): 2782-2792.
[83] Xiang X, Liu W, Fan A W. Comparison between the cooling performances of micro-jet impingement systems using liquid metal and water as coolants for high power electronics[J]. International Journal of Thermal Sciences, 2022, 173: 107375.
[84] Ma K Q, Liu J. Nano liquid-metal fluid as ultimate coolant[J]. Physics Letters A, 2007, 361(3): 252-256.
[85] Zhou X M, Li X F, Cheng K Y, et al. Numerical study of heat transfer enhancement of nano liquid-metal fluid forced convection in circular tube[J]. Journal of Heat Transfer, 2018, 140(8): 081901.
[86] Khan Y, Sarowar M T, Mobarrat M, et al. Performance comparison of a microchannel heat sink using different nano-liquid metal fluid coolant: A numerical study[J]. Journal of Thermal Science and Engineering Applications, 2022, 14(9): 091014.
[87] Zhou X M, Jiang Y N, Li X F, et al. Numerical investigation of heat transfer enhancement and entropy generation of natural convection in a cavity containing nano liquid-metal fluid[J]. International Communications in Heat and Mass Transfer, 2019, 106: 46-54.
[88] Zhou X M, Jiang Y Q, Wang Y, et al. Comprehensive heat transfer performance analysis of liquid metal based nanofluid laminar flow in circular tube[J]. International Journal of Mechanical Sciences, 2020, 175: 105530.
[89] Qi C, Wang G Q, Ma Y F, et al. Experimental research on stability and natural convection of TiO2-water nanofluid in enclosures with different rotation angles[J]. Nanoscale Research Letters, 2017, 12(1): 396.
[90] Yang X H, Tan S C, Liu J. Thermal management of Liion battery with liquid metal[J]. Energy Conversion and Management, 2016, 117: 577-585.
[91] Ghoshal U, Grimm D, Ibrani S, et al. High-performance liquid metal cooling loops[C]//Proceedings of Semiconductor Thermal Measurement and Management IEEE Twenty First Annual IEEE Symposium, 2005. Piscataway, NJ: IEEE, 2005: 16-19.
[92] Teglet T. Liquid metal cooling to revolutionize CPU cooling[EB/OL]. (2008-07-18) [2023-11-30]. https://news. softpedia.com/news/Liquid-Metal-Cooling-to-Revolution ize-CPU-Cooling-90325.shtml.
[93] Hilbert Hagedoorn. Danamics LMX Superleggera review [EB/OL]. (2010-06-08) [2023-11-30]. https://www. guru3d.com/review/danamics-lmx-superleggera-review/pag e-2/.
[94] Vetrovec J. Quasi-passive heat sink for high-power laser diodes[C]//High-Power Diode Laser Technology and Applications VII. San Jose, USA: SPIE, 2009, 7198: 104-113.
[95] Vetrovec J, Litt A S, Copeland D A, et al. Liquid metal heat sink for high-power laser diodes[C]//High-Power Diode Laser Technology and Applications Ⅺ. San Francisco, USA: SPIE, 2013, 8605: 95-101.
[96] Vetrovec J. High-performance heat sink for interfacing hybrid electric vehicles inverters to engine coolant loop [R]. Detroit, USA: SAE Technical Paper, 2011.