This paper uses irregular feedback linearization to stabilize nonholonomic chained systems. A discontinuous nonlinear transformation is constructed to change nonholonomic chained systems into linear systems,so that it possible to design feedback control laws using theory of linear systems. Then, a convenient invariant set and a switching rule are explicitly constructed for the high-dimension nonholonomic chained systems. The obtained discontinuous control laws can guarantee convergence of the close-loop system with an exponential rate and bounded inputs. Finally, simulation is provided to justify the effectiveness of the approach.
WANG Tingting
,
ZHAO Wanchun
,
SHAO Keyong
. Global K-exponential stabilization of nonholonomic chained systems based on nonregular feedback[J]. Science & Technology Review, 2015
, 33(9)
: 13
-17
.
DOI: 10.3981/j.issn.1000-7857.2015.09.001
[1] Brockett R W. Asymptotic stability and feedback stabilization[C]//Brockett R W, Millman R S, Sussmann H J. Differential geometry control theory. Boston: Birkhauser, 1983: 181-208
[2] Isidori A. Nonlinear control theory[M]. Berlin-Heidelberg: Springer, 1995.
[3] Ma B L, Huo W. Smooth time-varying exponential stabilization of nonholonomic chained systems[J]. Acta Automatica Sinica, 2003, 29(2): 301-305.
[4] TianYP,LiSH.Exponentialstabilizationofnonholonomicdynamic systems by smooth time-varying control[J]. Automatica, 2002, 38(7): 1139-1146.
[5] Sun Z D, Ge S S, Huo W, et al. Stabilization of nonholonomic chained systems via nonregular feedback linearization[J]. Systems and Control Letters, 2001, 44(4): 279-289.
[6] Marchand N, Alamir M. Discontinuous exponential stabilization of chained form systems[J]. Automatica, 2003, 39(2): 343-348.
[7] Lizarraga D A, Aneke N, Nijmeijer H. Robust exponential stabilization for the extended chained form via hybrid control[C]//Proceedings of the 41st IEEE Conference on Decision and Control. New York: IEEE, 2002: 2798-2803.
[8] 孙振东, 夏小华, 高为炳. 关于非线性系统非正则反馈线性化的一些初步结果[C]//中国控制会议论文集. 合肥: 中国科学技术出版社, 1994: 308-313. Sun Zhendong, Xia Xiaohua, Gaoweibing. Some preliminary results of the non regular feedback linearization of nonlinear system[C]//The Chinese Control Conference Proceedings. Hefei: Science and Technology of China Press, 1994: 308-313.
[9] Sun Z D, Xia X H. On nonregular feedback linearization[J]. Automatica, 1997, 33(7): 1339-1344.
[10] Ge S S, Sun Z D, Lee T H. Nonregular feedback linearization for a class of second-order nonlinear systems[J]. Automatica, 2001, 37(11): 1819-1824.
[11] Sun Z D, Ge S S. Nonregular feedback linearization: A nonsmooth approach[J]. IEEE Transactions on Automatic Control, 2003, 48(10): 1772-1776.
[12] Li M J, Liu G L. Global Exponential Regulation of nonholonomic chained systems via nonregular feedback[C]//Proceedings of the 2010 IEEE International Conference on Electrical and Control Engineering. New York: IEEE, 2010: 1062-1065.
[13] Murray R M, Sastry S S. Nonholonomic motion planning: steering using sinusiods[J]. IEEE Transactionson Automat Control, 1993, 38(5): 700-716.
[14] Kolmanovsky I, McClamroch N H. Development in nonholonomic control problems[J]. IEEE Control Systems Magazine, 1995, 15(6): 20-36.
[15] Ma B L. Global K-exponential asymptotic stabilization of underactuated surface vessels[J]. Systems and Control Letters, 2009, 58(3): 194-201.
[16] 李明军. 非完整系统的指数镇定[D]. 北京: 北京航空航天大学, 2011. Li Mingjun. Exponential stabilization of nonholonomic system[D]. Beijing: Beihang University, 2011.
[17] Nakamura Y, Chung W, Sordalen O J. Design and control of the nonholonomic manipulator[J]. IEEE Transactions on Robotics and Automation, 2001, 17(1): 48-59.