Special lssues

Vision based localization and mapping for multi-rotor UAV

  • GUO Feng, WANG Guosheng, LÜ Qiang, ZHANG Yang
Expand
  • Department of Control Engineering, Academy of Armored Forces Engineering, Beijing 100072, China

Received date: 2015-10-19

  Revised date: 2016-10-28

  Online published: 2017-04-18

Abstract

In GPS-denied unknown environment, the visual navigation and mapping for multi-rotor UAVs has become popular within the unmanned aircraft field. This paper gives an introduction to the technologies of UAV visual localization and mapping. First of all, the relative merits of two different autonomous flight control systems are analyzed and the difficulties and requirements of design are pointed out. Then, the different visual methods of UAV localization and mapping are investigated, the characteristics of some UAV visual methods are analyzed, and its present research development is summarized. Finally, the future research direction of UAV visual control is discussed.

Cite this article

GUO Feng, WANG Guosheng, LÜ Qiang, ZHANG Yang . Vision based localization and mapping for multi-rotor UAV[J]. Science & Technology Review, 2017 , 35(7) : 83 -87 . DOI: 10.3981/j.issn.1000-7857.2017.07.010

References

[1] 岳基隆, 张庆杰, 朱华勇. 微小型四旋翼无人机研究进展及关键技术浅析[J]. 电光与控制, 2010, 17(10): 46-52. Yue Jilong, Zhang Qingjie, Zhu Huayong. Research progress and key technologies of Micro quadrotor UAV[J]. Electro Optic and Control, 2010, 17(10): 46-52.
[2] Krajník T, Vonásek V, Fišer D, et al. AR-drone as a platform for robotic research and education[M]//Research and Education in Robotics-EUROBOT. Heidelberg: Springer Berlin, 2011: 172-186.
[3] Engel J, Sturm J, Cremers D. Camera-based navigation of a low-cost quadrocopter[C]//Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on. New York: IEEE, 2012: 2815-2821.
[4] Ghadiok V, Goldin J, Ren W. On the design and development of attitude stabilization, vision-based navigation, and aerial gripping for a low-cost quadrotor[J]. Autonomous Robots, 2012, 33(1-2): 41-68.
[5] Meier L, Tanskanen P, Fraundorfer F, et al. Pixhawk: A system for autonomous flight using onboard computer vision[C]//Robotics and Automation (ICRA), 2011 IEEE international conference on. New York: IEEE, 2011: 2992-2997.
[6] Gäbel M, Krüger T, Bestmann U. Design of a quadrotor system for an autonomous indoor exploration[C]. IMAV 2014: International Micro Air Vehicle Conference and Competition 2014, Delft, The Netherlands, August 12-15, 2014.
[7] Durrant-Whyte H, Bailey T. Simultaneous localization and mapping: Part I[J]. Robotics & Automation Magazine, IEEE, 2006, 13(2): 99-110.
[8] Huang A, Bachrach A, Henry P, et al. Visual odometry and mapping for autonomous flight using an RGB-D camera[C]//International Symposium on Robotics Research (ISRR), USA, 2011: 1-16.
[9] Li D, Li Q, Cheng N, et al. Combined RGBD-inertial based state estimation for MAV in GPS-denied indoor environments[C]// Control Conference (ASCC), 2013 9th Asian. IEEE, 2013: 1-8.
[10] Valenti R G, Dryanovski I, Jaramillo C, et al. Autonomous quadrotor flight using onboard RGB-D visual odometry[C]//Robotics and Automation (ICRA), 2014 IEEE International Conference on. New York: IEEE, 2014: 5233-5238.
[11] Engelhard N, Endres F, Hess J, et al. Real-time 3D visual SLAM with a hand-held RGB-D camera[C]//Proceeding of the RGB-D Workshop on 3D Perception in Robotics at the European Robotics Forum, Vasteras, Sweden. 2011: 180.
[12] Mouats T, Aouf N. Robust feature matching for aerial visual odometry[C]//ELMAR (ELMAR), 2014 56th International Symposium. IEEE, 2014: 1-4.
[13] Lovegrove S, Davison A J, Ibanez-Guzmán J. Accurate visual odometry from a rear parking camera[C]//Intelligent Vehicles Symposium (IV), 2011 IEEE. IEEE, 2011: 788-793.
[14] Comport A I, Malis E, Rives P. Real-time quadrifocal visual odometry[J]. The International Journal of Robotics Research, 2010, 29(2-3): 245-266.
[15] Steinbrücker F, Sturm J, Cremers D. Real-time visual odometry from dense RGB-D images[C]//Computer Vision Workshops (ICCV Workshops), 2011 IEEE International Conference on. IEEE, 2011: 719-722.
[16] Besl J, Mckay D. A method for registration of 3-D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 239-256.
[17] Henry P, Krainin M, Herbst E, et al. RGB-D mapping using depth cameras for dense 3D modeling of indoor environments[C]. the 12th International Symposium on Experimental Robotics(ISER), 2010.
[18] Newcombe R A, Izadi S, Hilliges O, et al. KinectFusion: Real-time dense surface mapping and tracking[C]//Mixed and Augmented Reality (ISMAR), 2011 10th IEEE International Symposium on. IEEE, 2011: 127-136.
[19] Newcombe R A, Lovegrove S J, Davison A J. DTAM: Dense tracking and mapping in real-time[C]//Computer Vision (ICCV), 2011 IEEE International Conference on. IEEE, 2011: 2320-2327.
[20] Engel J, Schöps T, Cremers D. LSD-SLAM: Large-scale direct monocular SLAM[M]//Computer Vision-ECCV. Heidelberg: Springer International Publishing, 2014: 834-849.
[21] Sturm J, Bylow E, Kerl C, et al. Dense tracking and mapping with a quadrocopter[C]//UAV-g 2013. 2013.
[22] Forster C, Pizzoli M, Scaramuzza D. SVO: Fast semi-direct monocular visual odometry[C]//Robotics and Automation (ICRA), 2014 IEEE International Conference on. IEEE, 2014: 15-22.
Outlines

/